TPTP Problem File: SEU447+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU447+1 : TPTP v8.2.0. Released v3.4.0.
% Domain   : Set Theory
% Problem  : First and Second Order Cutting of Binary Relations T59
% Version  : [Urb08] axioms : Especial.
% English  :

% Refs     : [Ret05] Retel (2005), Properties of First and Second Order Cut
%          : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
%          : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb08]
% Names    : t59_relset_2 [Urb08]

% Status   : Theorem
% Rating   : 0.67 v8.2.0, 0.72 v8.1.0, 0.67 v7.5.0, 0.75 v7.4.0, 0.60 v7.3.0, 0.62 v7.1.0, 0.57 v7.0.0, 0.67 v6.4.0, 0.69 v6.3.0, 0.62 v6.2.0, 0.68 v6.1.0, 0.73 v6.0.0, 0.70 v5.5.0, 0.81 v5.4.0, 0.82 v5.3.0, 0.89 v5.2.0, 0.85 v5.1.0, 0.90 v5.0.0, 0.88 v4.1.0, 0.91 v4.0.1, 0.96 v4.0.0, 1.00 v3.4.0
% Syntax   : Number of formulae    :   60 (  15 unt;   0 def)
%            Number of atoms       :  131 (  13 equ)
%            Maximal formula atoms :    4 (   2 avg)
%            Number of connectives :   83 (  12   ~;   1   |;  29   &)
%                                         (   2 <=>;  39  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   5 avg)
%            Maximal term depth    :    6 (   1 avg)
%            Number of predicates  :   13 (  11 usr;   1 prp; 0-3 aty)
%            Number of functors    :   15 (  15 usr;   1 con; 0-5 aty)
%            Number of variables   :  134 ( 124   !;  10   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Normal version: includes the axioms (which may be theorems from
%            other articles) and background that are possibly necessary.
%          : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
%          : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t59_relset_2,conjecture,
    ! [A,B,C,D] :
      ( m1_subset_1(D,k1_zfmisc_1(A))
     => ! [E] :
          ( m2_relset_1(E,A,B)
         => ! [F] :
              ( m2_relset_1(F,B,C)
             => k8_relset_2(B,C,k10_relset_1(A,B,E,D),F) = k8_relset_2(A,C,D,k3_subset_1(k2_zfmisc_1(A,C),k9_relset_2(A,B,C,E,k3_subset_1(k2_zfmisc_1(B,C),F)))) ) ) ) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => ~ r2_hidden(B,A) ) ).

fof(cc1_relat_1,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => v1_relat_1(A) ) ).

fof(cc1_relset_1,axiom,
    ! [A,B,C] :
      ( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
     => v1_relat_1(C) ) ).

fof(d4_relset_2,axiom,
    ! [A,B,C] :
      ( m1_subset_1(C,k1_zfmisc_1(A))
     => ! [D] :
          ( m1_subset_1(D,k1_zfmisc_1(k2_zfmisc_1(A,B)))
         => k7_relset_2(A,B,C,D) = k8_setfam_1(B,k4_relset_2(k1_zfmisc_1(A),B,k6_relset_2(B,A,D),k3_pua2mss1(C))) ) ) ).

fof(dt_k10_relset_1,axiom,
    ! [A,B,C,D] :
      ( m1_relset_1(C,A,B)
     => m1_subset_1(k10_relset_1(A,B,C,D),k1_zfmisc_1(B)) ) ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_zfmisc_1,axiom,
    $true ).

fof(dt_k3_pua2mss1,axiom,
    ! [A] : m1_eqrel_1(k3_pua2mss1(A),A) ).

fof(dt_k3_subset_1,axiom,
    ! [A,B] :
      ( m1_subset_1(B,k1_zfmisc_1(A))
     => m1_subset_1(k3_subset_1(A,B),k1_zfmisc_1(A)) ) ).

fof(dt_k4_relset_2,axiom,
    ! [A,B,C,D] :
      ( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,k1_zfmisc_1(B))))
     => m1_subset_1(k4_relset_2(A,B,C,D),k1_zfmisc_1(k1_zfmisc_1(B))) ) ).

fof(dt_k5_relat_1,axiom,
    ! [A,B] :
      ( ( v1_relat_1(A)
        & v1_relat_1(B) )
     => v1_relat_1(k5_relat_1(A,B)) ) ).

fof(dt_k5_relset_2,axiom,
    ! [A,B] :
      ( v1_relat_1(B)
     => ( v1_relat_1(k5_relset_2(A,B))
        & v1_funct_1(k5_relset_2(A,B)) ) ) ).

fof(dt_k6_relset_2,axiom,
    ! [A,B,C] :
      ( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(B,A)))
     => ( v1_funct_1(k6_relset_2(A,B,C))
        & v1_funct_2(k6_relset_2(A,B,C),k1_zfmisc_1(B),k1_zfmisc_1(A))
        & m2_relset_1(k6_relset_2(A,B,C),k1_zfmisc_1(B),k1_zfmisc_1(A)) ) ) ).

fof(dt_k7_relset_2,axiom,
    $true ).

fof(dt_k8_relset_2,axiom,
    ! [A,B,C,D] :
      ( ( m1_subset_1(C,k1_zfmisc_1(A))
        & m1_subset_1(D,k1_zfmisc_1(k2_zfmisc_1(A,B))) )
     => m1_subset_1(k8_relset_2(A,B,C,D),k1_zfmisc_1(B)) ) ).

fof(dt_k8_setfam_1,axiom,
    ! [A,B] :
      ( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
     => m1_subset_1(k8_setfam_1(A,B),k1_zfmisc_1(A)) ) ).

fof(dt_k9_relat_1,axiom,
    $true ).

fof(dt_k9_relset_2,axiom,
    ! [A,B,C,D,E] :
      ( ( m1_subset_1(D,k1_zfmisc_1(k2_zfmisc_1(A,B)))
        & m1_subset_1(E,k1_zfmisc_1(k2_zfmisc_1(B,C))) )
     => m2_relset_1(k9_relset_2(A,B,C,D,E),A,C) ) ).

fof(dt_m1_eqrel_1,axiom,
    ! [A,B] :
      ( m1_eqrel_1(B,A)
     => m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) ) ).

fof(dt_m1_relset_1,axiom,
    $true ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(dt_m2_relset_1,axiom,
    ! [A,B,C] :
      ( m2_relset_1(C,A,B)
     => m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).

fof(existence_m1_eqrel_1,axiom,
    ! [A] :
    ? [B] : m1_eqrel_1(B,A) ).

fof(existence_m1_relset_1,axiom,
    ! [A,B] :
    ? [C] : m1_relset_1(C,A,B) ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : m1_subset_1(B,A) ).

fof(existence_m2_relset_1,axiom,
    ! [A,B] :
    ? [C] : m2_relset_1(C,A,B) ).

fof(fc10_relat_1,axiom,
    ! [A,B] :
      ( ( v1_xboole_0(A)
        & v1_relat_1(B) )
     => ( v1_xboole_0(k5_relat_1(B,A))
        & v1_relat_1(k5_relat_1(B,A)) ) ) ).

fof(fc12_relat_1,axiom,
    ( v1_xboole_0(k1_xboole_0)
    & v1_relat_1(k1_xboole_0)
    & v3_relat_1(k1_xboole_0) ) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).

fof(fc1_sysrel,axiom,
    ! [A,B] : v1_relat_1(k2_zfmisc_1(A,B)) ).

fof(fc4_relat_1,axiom,
    ( v1_xboole_0(k1_xboole_0)
    & v1_relat_1(k1_xboole_0) ) ).

fof(fc4_subset_1,axiom,
    ! [A,B] :
      ( ( ~ v1_xboole_0(A)
        & ~ v1_xboole_0(B) )
     => ~ v1_xboole_0(k2_zfmisc_1(A,B)) ) ).

fof(fc9_relat_1,axiom,
    ! [A,B] :
      ( ( v1_xboole_0(A)
        & v1_relat_1(B) )
     => ( v1_xboole_0(k5_relat_1(A,B))
        & v1_relat_1(k5_relat_1(A,B)) ) ) ).

fof(involutiveness_k3_subset_1,axiom,
    ! [A,B] :
      ( m1_subset_1(B,k1_zfmisc_1(A))
     => k3_subset_1(A,k3_subset_1(A,B)) = B ) ).

fof(rc1_relat_1,axiom,
    ? [A] :
      ( v1_xboole_0(A)
      & v1_relat_1(A) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(A))
          & ~ v1_xboole_0(B) ) ) ).

fof(rc2_partfun1,axiom,
    ! [A,B] :
    ? [C] :
      ( m1_relset_1(C,A,B)
      & v1_relat_1(C)
      & v1_funct_1(C) ) ).

fof(rc2_relat_1,axiom,
    ? [A] :
      ( ~ v1_xboole_0(A)
      & v1_relat_1(A) ) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( m1_subset_1(B,k1_zfmisc_1(A))
      & v1_xboole_0(B) ) ).

fof(rc3_relat_1,axiom,
    ? [A] :
      ( v1_relat_1(A)
      & v3_relat_1(A) ) ).

fof(redefinition_k10_relset_1,axiom,
    ! [A,B,C,D] :
      ( m1_relset_1(C,A,B)
     => k10_relset_1(A,B,C,D) = k9_relat_1(C,D) ) ).

fof(redefinition_k4_relset_2,axiom,
    ! [A,B,C,D] :
      ( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,k1_zfmisc_1(B))))
     => k4_relset_2(A,B,C,D) = k9_relat_1(C,D) ) ).

fof(redefinition_k6_relset_2,axiom,
    ! [A,B,C] :
      ( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(B,A)))
     => k6_relset_2(A,B,C) = k5_relset_2(B,C) ) ).

fof(redefinition_k8_relset_2,axiom,
    ! [A,B,C,D] :
      ( ( m1_subset_1(C,k1_zfmisc_1(A))
        & m1_subset_1(D,k1_zfmisc_1(k2_zfmisc_1(A,B))) )
     => k8_relset_2(A,B,C,D) = k7_relset_2(A,B,C,D) ) ).

fof(redefinition_k9_relset_2,axiom,
    ! [A,B,C,D,E] :
      ( ( m1_subset_1(D,k1_zfmisc_1(k2_zfmisc_1(A,B)))
        & m1_subset_1(E,k1_zfmisc_1(k2_zfmisc_1(B,C))) )
     => k9_relset_2(A,B,C,D,E) = k5_relat_1(D,E) ) ).

fof(redefinition_m2_relset_1,axiom,
    ! [A,B,C] :
      ( m2_relset_1(C,A,B)
    <=> m1_relset_1(C,A,B) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : r1_tarski(A,A) ).

fof(t159_relat_1,axiom,
    ! [A,B] :
      ( v1_relat_1(B)
     => ! [C] :
          ( v1_relat_1(C)
         => k9_relat_1(k5_relat_1(B,C),A) = k9_relat_1(C,k9_relat_1(B,A)) ) ) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => m1_subset_1(A,B) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,B)
     => ( v1_xboole_0(B)
        | r2_hidden(A,B) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,k1_zfmisc_1(B))
    <=> r1_tarski(A,B) ) ).

fof(t49_relset_2,axiom,
    ! [A,B,C] :
      ( m1_subset_1(C,k1_zfmisc_1(A))
     => ! [D] :
          ( m1_subset_1(D,k1_zfmisc_1(k2_zfmisc_1(A,B)))
         => k3_subset_1(B,k8_relset_2(A,B,C,D)) = k9_relat_1(k3_subset_1(k2_zfmisc_1(A,B),D),C) ) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C)) )
     => m1_subset_1(A,C) ) ).

fof(t50_relset_2,axiom,
    ! [A,B,C] :
      ( m1_subset_1(C,k1_zfmisc_1(A))
     => ! [D] :
          ( m2_relset_1(D,A,B)
         => k3_subset_1(B,k10_relset_1(A,B,D,C)) = k8_relset_2(A,B,C,k3_subset_1(k2_zfmisc_1(A,B),D)) ) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C))
        & v1_xboole_0(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => A = k1_xboole_0 ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( r2_hidden(A,B)
        & v1_xboole_0(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( v1_xboole_0(A)
        & A != B
        & v1_xboole_0(B) ) ).

%------------------------------------------------------------------------------