TPTP Problem File: SEU398+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU398+1 : TPTP v8.2.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem t31_yellow19
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-t31_yellow19 [Urb07]

% Status   : Theorem
% Rating   : 1.00 v3.3.0
% Syntax   : Number of formulae    :  141 (  22 unt;   0 def)
%            Number of atoms       :  628 (  37 equ)
%            Maximal formula atoms :   15 (   4 avg)
%            Number of connectives :  580 (  93   ~;   2   |; 310   &)
%                                         (  20 <=>; 155  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   6 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :   42 (  40 usr;   1 prp; 0-3 aty)
%            Number of functors    :   23 (  23 usr;   1 con; 0-4 aty)
%            Number of variables   :  304 ( 266   !;  38   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(abstractness_v6_waybel_0,axiom,
    ! [A,B] :
      ( ( one_sorted_str(A)
        & net_str(B,A) )
     => ( strict_net_str(B,A)
       => B = net_str_of(A,the_carrier(B),the_InternalRel(B),the_mapping(A,B)) ) ) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(cc1_finset_1,axiom,
    ! [A] :
      ( empty(A)
     => finite(A) ) ).

fof(cc1_relat_1,axiom,
    ! [A] :
      ( empty(A)
     => relation(A) ) ).

fof(cc1_relset_1,axiom,
    ! [A,B,C] :
      ( element(C,powerset(cartesian_product2(A,B)))
     => relation(C) ) ).

fof(cc1_tops_1,axiom,
    ! [A] :
      ( ( topological_space(A)
        & top_str(A) )
     => ! [B] :
          ( element(B,powerset(the_carrier(A)))
         => ( empty(B)
           => ( open_subset(B,A)
              & closed_subset(B,A) ) ) ) ) ).

fof(cc2_finset_1,axiom,
    ! [A] :
      ( finite(A)
     => ! [B] :
          ( element(B,powerset(A))
         => finite(B) ) ) ).

fof(cc2_tops_1,axiom,
    ! [A] :
      ( top_str(A)
     => ! [B] :
          ( element(B,powerset(the_carrier(A)))
         => ( empty(B)
           => boundary_set(B,A) ) ) ) ).

fof(cc3_tops_1,axiom,
    ! [A] :
      ( ( topological_space(A)
        & top_str(A) )
     => ! [B] :
          ( element(B,powerset(the_carrier(A)))
         => ( empty(B)
           => nowhere_dense(B,A) ) ) ) ).

fof(cc4_tops_1,axiom,
    ! [A] :
      ( ( topological_space(A)
        & top_str(A) )
     => ! [B] :
          ( element(B,powerset(the_carrier(A)))
         => ( nowhere_dense(B,A)
           => boundary_set(B,A) ) ) ) ).

fof(cc5_tops_1,axiom,
    ! [A] :
      ( ( topological_space(A)
        & top_str(A) )
     => ! [B] :
          ( element(B,powerset(the_carrier(A)))
         => ( ( closed_subset(B,A)
              & boundary_set(B,A) )
           => ( boundary_set(B,A)
              & nowhere_dense(B,A) ) ) ) ) ).

fof(cc6_tops_1,axiom,
    ! [A] :
      ( ( topological_space(A)
        & top_str(A) )
     => ! [B] :
          ( element(B,powerset(the_carrier(A)))
         => ( ( open_subset(B,A)
              & nowhere_dense(B,A) )
           => ( empty(B)
              & open_subset(B,A)
              & closed_subset(B,A)
              & v1_membered(B)
              & v2_membered(B)
              & v3_membered(B)
              & v4_membered(B)
              & v5_membered(B)
              & boundary_set(B,A)
              & nowhere_dense(B,A) ) ) ) ) ).

fof(commutativity_k3_xboole_0,axiom,
    ! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).

fof(commutativity_k5_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => subset_intersection2(A,B,C) = subset_intersection2(A,C,B) ) ).

fof(d12_waybel_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ! [B] :
          ( ( ~ empty_carrier(B)
            & net_str(B,A) )
         => ! [C] :
              ( is_often_in(A,B,C)
            <=> ! [D] :
                  ( element(D,the_carrier(B))
                 => ? [E] :
                      ( element(E,the_carrier(B))
                      & related(B,D,E)
                      & in(apply_netmap(A,B,E),C) ) ) ) ) ) ).

fof(d13_pre_topc,axiom,
    ! [A] :
      ( top_str(A)
     => ! [B] :
          ( element(B,powerset(the_carrier(A)))
         => ! [C] :
              ( element(C,powerset(the_carrier(A)))
             => ( C = topstr_closure(A,B)
              <=> ! [D] :
                    ( in(D,the_carrier(A))
                   => ( in(D,C)
                    <=> ! [E] :
                          ( element(E,powerset(the_carrier(A)))
                         => ~ ( open_subset(E,A)
                              & in(D,E)
                              & disjoint(B,E) ) ) ) ) ) ) ) ) ).

fof(d1_connsp_2,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A) )
     => ! [B] :
          ( element(B,the_carrier(A))
         => ! [C] :
              ( element(C,powerset(the_carrier(A)))
             => ( point_neighbourhood(C,A,B)
              <=> in(B,interior(A,C)) ) ) ) ) ).

fof(d1_funct_2,axiom,
    ! [A,B,C] :
      ( relation_of2_as_subset(C,A,B)
     => ( ( ( B = empty_set
           => A = empty_set )
         => ( quasi_total(C,A,B)
          <=> A = relation_dom_as_subset(A,B,C) ) )
        & ( B = empty_set
         => ( A = empty_set
            | ( quasi_total(C,A,B)
            <=> C = empty_set ) ) ) ) ) ).

fof(d2_yellow19,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ! [B] :
          ( ( ~ empty_carrier(B)
            & net_str(B,A) )
         => ! [C] :
              ( element(C,powerset(the_carrier(A)))
             => ( netstr_induced_subset(C,A,B)
              <=> ? [D] :
                    ( element(D,the_carrier(B))
                    & C = relation_rng_as_subset(the_carrier(netstr_restr_to_element(A,B,D)),the_carrier(A),the_mapping(A,netstr_restr_to_element(A,B,D))) ) ) ) ) ) ).

fof(d3_xboole_0,axiom,
    ! [A,B,C] :
      ( C = set_intersection2(A,B)
    <=> ! [D] :
          ( in(D,C)
        <=> ( in(D,A)
            & in(D,B) ) ) ) ).

fof(d5_funct_1,axiom,
    ! [A] :
      ( ( relation(A)
        & function(A) )
     => ! [B] :
          ( B = relation_rng(A)
        <=> ! [C] :
              ( in(C,B)
            <=> ? [D] :
                  ( in(D,relation_dom(A))
                  & C = apply(A,D) ) ) ) ) ).

fof(d7_xboole_0,axiom,
    ! [A,B] :
      ( disjoint(A,B)
    <=> set_intersection2(A,B) = empty_set ) ).

fof(d8_waybel_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ! [B] :
          ( ( ~ empty_carrier(B)
            & net_str(B,A) )
         => ! [C] :
              ( element(C,the_carrier(B))
             => apply_netmap(A,B,C) = apply_on_structs(B,A,the_mapping(A,B),C) ) ) ) ).

fof(d9_waybel_9,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A) )
     => ! [B] :
          ( ( ~ empty_carrier(B)
            & net_str(B,A) )
         => ! [C] :
              ( element(C,the_carrier(A))
             => ( is_a_cluster_point_of_netstr(A,B,C)
              <=> ! [D] :
                    ( point_neighbourhood(D,A,C)
                   => is_often_in(A,B,D) ) ) ) ) ) ).

fof(dt_g1_waybel_0,axiom,
    ! [A,B,C,D] :
      ( ( one_sorted_str(A)
        & relation_of2(C,B,B)
        & function(D)
        & quasi_total(D,B,the_carrier(A))
        & relation_of2(D,B,the_carrier(A)) )
     => ( strict_net_str(net_str_of(A,B,C,D),A)
        & net_str(net_str_of(A,B,C,D),A) ) ) ).

fof(dt_k1_funct_1,axiom,
    $true ).

fof(dt_k1_pre_topc,axiom,
    ! [A] :
      ( one_sorted_str(A)
     => element(empty_carrier_subset(A),powerset(the_carrier(A))) ) ).

fof(dt_k1_relat_1,axiom,
    $true ).

fof(dt_k1_tops_1,axiom,
    ! [A,B] :
      ( ( top_str(A)
        & element(B,powerset(the_carrier(A))) )
     => element(interior(A,B),powerset(the_carrier(A))) ) ).

fof(dt_k1_waybel_0,axiom,
    ! [A,B,C,D] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & one_sorted_str(B)
        & function(C)
        & quasi_total(C,the_carrier(A),the_carrier(B))
        & relation_of2(C,the_carrier(A),the_carrier(B))
        & element(D,the_carrier(A)) )
     => element(apply_on_structs(A,B,C,D),the_carrier(B)) ) ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_relat_1,axiom,
    $true ).

fof(dt_k2_zfmisc_1,axiom,
    $true ).

fof(dt_k3_waybel_0,axiom,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & net_str(B,A)
        & element(C,the_carrier(B)) )
     => element(apply_netmap(A,B,C),the_carrier(A)) ) ).

fof(dt_k3_xboole_0,axiom,
    $true ).

fof(dt_k4_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2(C,A,B)
     => element(relation_dom_as_subset(A,B,C),powerset(A)) ) ).

fof(dt_k5_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2(C,A,B)
     => element(relation_rng_as_subset(A,B,C),powerset(B)) ) ).

fof(dt_k5_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => element(subset_intersection2(A,B,C),powerset(A)) ) ).

fof(dt_k5_waybel_9,axiom,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & net_str(B,A)
        & element(C,the_carrier(B)) )
     => ( strict_net_str(netstr_restr_to_element(A,B,C),A)
        & net_str(netstr_restr_to_element(A,B,C),A) ) ) ).

fof(dt_k6_pre_topc,axiom,
    ! [A,B] :
      ( ( top_str(A)
        & element(B,powerset(the_carrier(A))) )
     => element(topstr_closure(A,B),powerset(the_carrier(A))) ) ).

fof(dt_k6_waybel_9,axiom,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & transitive_relstr(B)
        & directed_relstr(B)
        & net_str(B,A)
        & element(C,the_carrier(B)) )
     => ( strict_net_str(subnetstr_of_element(A,B,C),A)
        & subnet(subnetstr_of_element(A,B,C),A,B) ) ) ).

fof(dt_l1_orders_2,axiom,
    ! [A] :
      ( rel_str(A)
     => one_sorted_str(A) ) ).

fof(dt_l1_pre_topc,axiom,
    ! [A] :
      ( top_str(A)
     => one_sorted_str(A) ) ).

fof(dt_l1_struct_0,axiom,
    $true ).

fof(dt_l1_waybel_0,axiom,
    ! [A] :
      ( one_sorted_str(A)
     => ! [B] :
          ( net_str(B,A)
         => rel_str(B) ) ) ).

fof(dt_m1_connsp_2,axiom,
    ! [A,B] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A)
        & element(B,the_carrier(A)) )
     => ! [C] :
          ( point_neighbourhood(C,A,B)
         => element(C,powerset(the_carrier(A))) ) ) ).

fof(dt_m1_relset_1,axiom,
    $true ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(dt_m1_yellow19,axiom,
    ! [A,B] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & net_str(B,A) )
     => ! [C] :
          ( netstr_induced_subset(C,A,B)
         => element(C,powerset(the_carrier(A))) ) ) ).

fof(dt_m2_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2_as_subset(C,A,B)
     => element(C,powerset(cartesian_product2(A,B))) ) ).

fof(dt_m2_yellow_6,axiom,
    ! [A,B] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & transitive_relstr(B)
        & directed_relstr(B)
        & net_str(B,A) )
     => ! [C] :
          ( subnet(C,A,B)
         => ( ~ empty_carrier(C)
            & transitive_relstr(C)
            & directed_relstr(C)
            & net_str(C,A) ) ) ) ).

fof(dt_u1_orders_2,axiom,
    ! [A] :
      ( rel_str(A)
     => relation_of2_as_subset(the_InternalRel(A),the_carrier(A),the_carrier(A)) ) ).

fof(dt_u1_struct_0,axiom,
    $true ).

fof(dt_u1_waybel_0,axiom,
    ! [A,B] :
      ( ( one_sorted_str(A)
        & net_str(B,A) )
     => ( function(the_mapping(A,B))
        & quasi_total(the_mapping(A,B),the_carrier(B),the_carrier(A))
        & relation_of2_as_subset(the_mapping(A,B),the_carrier(B),the_carrier(A)) ) ) ).

fof(existence_l1_orders_2,axiom,
    ? [A] : rel_str(A) ).

fof(existence_l1_pre_topc,axiom,
    ? [A] : top_str(A) ).

fof(existence_l1_struct_0,axiom,
    ? [A] : one_sorted_str(A) ).

fof(existence_l1_waybel_0,axiom,
    ! [A] :
      ( one_sorted_str(A)
     => ? [B] : net_str(B,A) ) ).

fof(existence_m1_connsp_2,axiom,
    ! [A,B] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A)
        & element(B,the_carrier(A)) )
     => ? [C] : point_neighbourhood(C,A,B) ) ).

fof(existence_m1_relset_1,axiom,
    ! [A,B] :
    ? [C] : relation_of2(C,A,B) ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : element(B,A) ).

fof(existence_m1_yellow19,axiom,
    ! [A,B] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & net_str(B,A) )
     => ? [C] : netstr_induced_subset(C,A,B) ) ).

fof(existence_m2_relset_1,axiom,
    ! [A,B] :
    ? [C] : relation_of2_as_subset(C,A,B) ).

fof(existence_m2_yellow_6,axiom,
    ! [A,B] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & transitive_relstr(B)
        & directed_relstr(B)
        & net_str(B,A) )
     => ? [C] : subnet(C,A,B) ) ).

fof(fc10_finset_1,axiom,
    ! [A,B] :
      ( finite(B)
     => finite(set_intersection2(A,B)) ) ).

fof(fc10_tops_1,axiom,
    ! [A,B] :
      ( ( top_str(A)
        & boundary_set(B,A)
        & element(B,powerset(the_carrier(A))) )
     => ( empty(interior(A,B))
        & v1_membered(interior(A,B))
        & v2_membered(interior(A,B))
        & v3_membered(interior(A,B))
        & v4_membered(interior(A,B))
        & v5_membered(interior(A,B))
        & boundary_set(interior(A,B),A) ) ) ).

fof(fc11_finset_1,axiom,
    ! [A,B] :
      ( finite(A)
     => finite(set_intersection2(A,B)) ) ).

fof(fc12_relat_1,axiom,
    ( empty(empty_set)
    & relation(empty_set)
    & relation_empty_yielding(empty_set) ) ).

fof(fc14_finset_1,axiom,
    ! [A,B] :
      ( ( finite(A)
        & finite(B) )
     => finite(cartesian_product2(A,B)) ) ).

fof(fc15_yellow_6,axiom,
    ! [A,B] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & net_str(B,A) )
     => ( ~ empty(the_mapping(A,B))
        & relation(the_mapping(A,B))
        & function(the_mapping(A,B))
        & quasi_total(the_mapping(A,B),the_carrier(B),the_carrier(A)) ) ) ).

fof(fc1_pre_topc,axiom,
    ! [A] :
      ( one_sorted_str(A)
     => ( empty(empty_carrier_subset(A))
        & v1_membered(empty_carrier_subset(A))
        & v2_membered(empty_carrier_subset(A))
        & v3_membered(empty_carrier_subset(A))
        & v4_membered(empty_carrier_subset(A))
        & v5_membered(empty_carrier_subset(A)) ) ) ).

fof(fc1_relat_1,axiom,
    ! [A,B] :
      ( ( relation(A)
        & relation(B) )
     => relation(set_intersection2(A,B)) ) ).

fof(fc1_struct_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ~ empty(the_carrier(A)) ) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ empty(powerset(A)) ).

fof(fc1_tops_1,axiom,
    ! [A] :
      ( ( topological_space(A)
        & top_str(A) )
     => ( empty(empty_carrier_subset(A))
        & closed_subset(empty_carrier_subset(A),A)
        & v1_membered(empty_carrier_subset(A))
        & v2_membered(empty_carrier_subset(A))
        & v3_membered(empty_carrier_subset(A))
        & v4_membered(empty_carrier_subset(A))
        & v5_membered(empty_carrier_subset(A)) ) ) ).

fof(fc1_waybel_0,axiom,
    ! [A] :
      ( rel_str(A)
     => ( empty(empty_carrier_subset(A))
        & strongly_connected_rel_subset(empty_carrier_subset(A),A)
        & finite(empty_carrier_subset(A))
        & v1_membered(empty_carrier_subset(A))
        & v2_membered(empty_carrier_subset(A))
        & v3_membered(empty_carrier_subset(A))
        & v4_membered(empty_carrier_subset(A))
        & v5_membered(empty_carrier_subset(A))
        & directed_subset(empty_carrier_subset(A),A)
        & filtered_subset(empty_carrier_subset(A),A) ) ) ).

fof(fc22_waybel_9,axiom,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & directed_relstr(B)
        & net_str(B,A)
        & element(C,the_carrier(B)) )
     => ( ~ empty_carrier(netstr_restr_to_element(A,B,C))
        & strict_net_str(netstr_restr_to_element(A,B,C),A) ) ) ).

fof(fc26_waybel_9,axiom,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & transitive_relstr(B)
        & directed_relstr(B)
        & net_str(B,A)
        & element(C,the_carrier(B)) )
     => ( ~ empty_carrier(netstr_restr_to_element(A,B,C))
        & transitive_relstr(netstr_restr_to_element(A,B,C))
        & strict_net_str(netstr_restr_to_element(A,B,C),A)
        & directed_relstr(netstr_restr_to_element(A,B,C)) ) ) ).

fof(fc2_tops_1,axiom,
    ! [A,B] :
      ( ( topological_space(A)
        & top_str(A)
        & element(B,powerset(the_carrier(A))) )
     => closed_subset(topstr_closure(A,B),A) ) ).

fof(fc4_relat_1,axiom,
    ( empty(empty_set)
    & relation(empty_set) ) ).

fof(fc4_subset_1,axiom,
    ! [A,B] :
      ( ( ~ empty(A)
        & ~ empty(B) )
     => ~ empty(cartesian_product2(A,B)) ) ).

fof(fc5_relat_1,axiom,
    ! [A] :
      ( ( ~ empty(A)
        & relation(A) )
     => ~ empty(relation_dom(A)) ) ).

fof(fc5_tops_1,axiom,
    ! [A] :
      ( top_str(A)
     => ( empty(interior(A,empty_carrier_subset(A)))
        & v1_membered(interior(A,empty_carrier_subset(A)))
        & v2_membered(interior(A,empty_carrier_subset(A)))
        & v3_membered(interior(A,empty_carrier_subset(A)))
        & v4_membered(interior(A,empty_carrier_subset(A)))
        & v5_membered(interior(A,empty_carrier_subset(A))) ) ) ).

fof(fc6_relat_1,axiom,
    ! [A] :
      ( ( ~ empty(A)
        & relation(A) )
     => ~ empty(relation_rng(A)) ) ).

fof(fc6_tops_1,axiom,
    ! [A,B] :
      ( ( topological_space(A)
        & top_str(A)
        & element(B,powerset(the_carrier(A))) )
     => open_subset(interior(A,B),A) ) ).

fof(fc6_waybel_0,axiom,
    ! [A,B,C,D] :
      ( ( one_sorted_str(A)
        & ~ empty(B)
        & relation_of2(C,B,B)
        & function(D)
        & quasi_total(D,B,the_carrier(A))
        & relation_of2(D,B,the_carrier(A)) )
     => ( ~ empty_carrier(net_str_of(A,B,C,D))
        & strict_net_str(net_str_of(A,B,C,D),A) ) ) ).

fof(fc7_relat_1,axiom,
    ! [A] :
      ( empty(A)
     => ( empty(relation_dom(A))
        & relation(relation_dom(A)) ) ) ).

fof(fc7_tops_1,axiom,
    ! [A] :
      ( ( topological_space(A)
        & top_str(A) )
     => ( empty(empty_carrier_subset(A))
        & open_subset(empty_carrier_subset(A),A)
        & closed_subset(empty_carrier_subset(A),A)
        & v1_membered(empty_carrier_subset(A))
        & v2_membered(empty_carrier_subset(A))
        & v3_membered(empty_carrier_subset(A))
        & v4_membered(empty_carrier_subset(A))
        & v5_membered(empty_carrier_subset(A)) ) ) ).

fof(fc8_relat_1,axiom,
    ! [A] :
      ( empty(A)
     => ( empty(relation_rng(A))
        & relation(relation_rng(A)) ) ) ).

fof(fraenkel_a_3_0_waybel_9,axiom,
    ! [A,B,C,D] :
      ( ( ~ empty_carrier(B)
        & one_sorted_str(B)
        & ~ empty_carrier(C)
        & net_str(C,B)
        & element(D,the_carrier(C)) )
     => ( in(A,a_3_0_waybel_9(B,C,D))
      <=> ? [E] :
            ( element(E,the_carrier(C))
            & A = E
            & related(C,D,E) ) ) ) ).

fof(fraenkel_a_3_3_yellow19,axiom,
    ! [A,B,C,D] :
      ( ( ~ empty_carrier(B)
        & topological_space(B)
        & top_str(B)
        & ~ empty_carrier(C)
        & transitive_relstr(C)
        & directed_relstr(C)
        & net_str(C,B)
        & element(D,the_carrier(C)) )
     => ( in(A,a_3_3_yellow19(B,C,D))
      <=> ? [E] :
            ( element(E,the_carrier(C))
            & A = E
            & related(C,D,E) ) ) ) ).

fof(free_g1_waybel_0,axiom,
    ! [A,B,C,D] :
      ( ( one_sorted_str(A)
        & relation_of2(C,B,B)
        & function(D)
        & quasi_total(D,B,the_carrier(A))
        & relation_of2(D,B,the_carrier(A)) )
     => ! [E,F,G,H] :
          ( net_str_of(A,B,C,D) = net_str_of(E,F,G,H)
         => ( A = E
            & B = F
            & C = G
            & D = H ) ) ) ).

fof(idempotence_k3_xboole_0,axiom,
    ! [A,B] : set_intersection2(A,A) = A ).

fof(idempotence_k5_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => subset_intersection2(A,B,B) = B ) ).

fof(rc1_finset_1,axiom,
    ? [A] :
      ( ~ empty(A)
      & finite(A) ) ).

fof(rc1_relat_1,axiom,
    ? [A] :
      ( empty(A)
      & relation(A) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B) ) ) ).

fof(rc1_tops_1,axiom,
    ! [A] :
      ( ( topological_space(A)
        & top_str(A) )
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & open_subset(B,A) ) ) ).

fof(rc1_waybel_0,axiom,
    ! [A] :
      ( rel_str(A)
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & directed_subset(B,A)
          & filtered_subset(B,A) ) ) ).

fof(rc1_waybel_9,axiom,
    ! [A,B] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & transitive_relstr(B)
        & directed_relstr(B)
        & net_str(B,A) )
     => ? [C] :
          ( subnet(C,A,B)
          & ~ empty_carrier(C)
          & transitive_relstr(C)
          & strict_net_str(C,A)
          & directed_relstr(C) ) ) ).

fof(rc2_relat_1,axiom,
    ? [A] :
      ( ~ empty(A)
      & relation(A) ) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( element(B,powerset(A))
      & empty(B) ) ).

fof(rc2_tops_1,axiom,
    ! [A] :
      ( ( topological_space(A)
        & top_str(A) )
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & open_subset(B,A)
          & closed_subset(B,A) ) ) ).

fof(rc2_waybel_7,axiom,
    ! [A] :
    ? [B] :
      ( element(B,powerset(powerset(A)))
      & ~ empty(B)
      & finite(B) ) ).

fof(rc3_finset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B)
          & finite(B) ) ) ).

fof(rc3_relat_1,axiom,
    ? [A] :
      ( relation(A)
      & relation_empty_yielding(A) ) ).

fof(rc3_struct_0,axiom,
    ? [A] :
      ( one_sorted_str(A)
      & ~ empty_carrier(A) ) ).

fof(rc3_tops_1,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A) )
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & ~ empty(B)
          & open_subset(B,A)
          & closed_subset(B,A) ) ) ).

fof(rc3_waybel_7,axiom,
    ! [A] :
      ( one_sorted_str(A)
     => ? [B] :
          ( element(B,powerset(powerset(the_carrier(A))))
          & ~ empty(B)
          & finite(B) ) ) ).

fof(rc4_finset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B)
          & finite(B) ) ) ).

fof(rc4_tops_1,axiom,
    ! [A] :
      ( top_str(A)
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & empty(B)
          & v1_membered(B)
          & v2_membered(B)
          & v3_membered(B)
          & v4_membered(B)
          & v5_membered(B)
          & boundary_set(B,A) ) ) ).

fof(rc4_waybel_0,axiom,
    ! [A] :
      ( one_sorted_str(A)
     => ? [B] :
          ( net_str(B,A)
          & strict_net_str(B,A) ) ) ).

fof(rc5_struct_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & ~ empty(B) ) ) ).

fof(rc5_tops_1,axiom,
    ! [A] :
      ( ( topological_space(A)
        & top_str(A) )
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & empty(B)
          & open_subset(B,A)
          & closed_subset(B,A)
          & v1_membered(B)
          & v2_membered(B)
          & v3_membered(B)
          & v4_membered(B)
          & v5_membered(B)
          & boundary_set(B,A)
          & nowhere_dense(B,A) ) ) ).

fof(rc6_pre_topc,axiom,
    ! [A] :
      ( ( topological_space(A)
        & top_str(A) )
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & closed_subset(B,A) ) ) ).

fof(rc7_pre_topc,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A) )
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & ~ empty(B)
          & closed_subset(B,A) ) ) ).

fof(redefinition_k1_waybel_0,axiom,
    ! [A,B,C,D] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & one_sorted_str(B)
        & function(C)
        & quasi_total(C,the_carrier(A),the_carrier(B))
        & relation_of2(C,the_carrier(A),the_carrier(B))
        & element(D,the_carrier(A)) )
     => apply_on_structs(A,B,C,D) = apply(C,D) ) ).

fof(redefinition_k4_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2(C,A,B)
     => relation_dom_as_subset(A,B,C) = relation_dom(C) ) ).

fof(redefinition_k5_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2(C,A,B)
     => relation_rng_as_subset(A,B,C) = relation_rng(C) ) ).

fof(redefinition_k5_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => subset_intersection2(A,B,C) = set_intersection2(B,C) ) ).

fof(redefinition_k6_waybel_9,axiom,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A)
        & ~ empty_carrier(B)
        & transitive_relstr(B)
        & directed_relstr(B)
        & net_str(B,A)
        & element(C,the_carrier(B)) )
     => subnetstr_of_element(A,B,C) = netstr_restr_to_element(A,B,C) ) ).

fof(redefinition_m2_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2_as_subset(C,A,B)
    <=> relation_of2(C,A,B) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(symmetry_r1_xboole_0,axiom,
    ! [A,B] :
      ( disjoint(A,B)
     => disjoint(B,A) ) ).

fof(t12_waybel_9,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ! [B] :
          ( ( ~ empty_carrier(B)
            & net_str(B,A) )
         => ! [C] :
              ( element(C,the_carrier(B))
             => the_carrier(netstr_restr_to_element(A,B,C)) = a_3_0_waybel_9(A,B,C) ) ) ) ).

fof(t16_waybel_9,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ! [B] :
          ( ( ~ empty_carrier(B)
            & directed_relstr(B)
            & net_str(B,A) )
         => ! [C] :
              ( element(C,the_carrier(B))
             => ! [D] :
                  ( element(D,the_carrier(B))
                 => ! [E] :
                      ( element(E,the_carrier(netstr_restr_to_element(A,B,C)))
                     => ( D = E
                       => apply_netmap(A,B,D) = apply_netmap(A,netstr_restr_to_element(A,B,C),E) ) ) ) ) ) ) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t23_yellow19,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A) )
     => ! [B] :
          ( element(B,powerset(the_carrier(A)))
         => ! [C] :
              ( element(C,the_carrier(A))
             => ( in(C,topstr_closure(A,B))
              <=> ? [D] :
                    ( ~ empty_carrier(D)
                    & transitive_relstr(D)
                    & directed_relstr(D)
                    & net_str(D,A)
                    & is_eventually_in(A,D,B)
                    & is_a_cluster_point_of_netstr(A,D,C) ) ) ) ) ) ).

fof(t2_boole,axiom,
    ! [A] : set_intersection2(A,empty_set) = empty_set ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( element(A,B)
     => ( empty(B)
        | in(A,B) ) ) ).

fof(t2_tarski,axiom,
    ! [A,B] :
      ( ! [C] :
          ( in(C,A)
        <=> in(C,B) )
     => A = B ) ).

fof(t31_yellow19,conjecture,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A) )
     => ! [B] :
          ( ( ~ empty_carrier(B)
            & transitive_relstr(B)
            & directed_relstr(B)
            & net_str(B,A) )
         => ! [C] :
              ( element(C,the_carrier(A))
             => ( is_a_cluster_point_of_netstr(A,B,C)
              <=> ! [D] :
                    ( netstr_induced_subset(D,A,B)
                   => in(C,topstr_closure(A,D)) ) ) ) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( element(A,powerset(B))
    <=> subset(A,B) ) ).

fof(t44_tops_1,axiom,
    ! [A] :
      ( top_str(A)
     => ! [B] :
          ( element(B,powerset(the_carrier(A)))
         => subset(interior(A,B),B) ) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( in(A,B)
        & element(B,powerset(C)) )
     => element(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( in(A,B)
        & element(B,powerset(C))
        & empty(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( empty(A)
     => A = empty_set ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & empty(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( empty(A)
        & A != B
        & empty(B) ) ).

fof(t9_yellow19,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ! [B] :
          ( ( ~ empty_carrier(B)
            & transitive_relstr(B)
            & directed_relstr(B)
            & net_str(B,A) )
         => ! [C] :
              ( netstr_induced_subset(C,A,B)
             => is_eventually_in(A,B,C) ) ) ) ).

%------------------------------------------------------------------------------