TPTP Problem File: SEU364+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU364+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem s1_xboole_0__e2_28_1_1__finset_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-s1_xboole_0__e2_28_1_1__finset_1 [Urb07]
% Status : Theorem
% Rating : 0.39 v8.1.0, 0.33 v7.5.0, 0.38 v7.4.0, 0.27 v7.3.0, 0.31 v7.2.0, 0.28 v7.1.0, 0.30 v7.0.0, 0.33 v6.4.0, 0.38 v6.2.0, 0.48 v6.1.0, 0.57 v6.0.0, 0.48 v5.5.0, 0.56 v5.4.0, 0.57 v5.3.0, 0.63 v5.2.0, 0.40 v5.1.0, 0.43 v5.0.0, 0.54 v4.1.0, 0.57 v4.0.0, 0.58 v3.7.0, 0.65 v3.5.0, 0.68 v3.4.0, 0.53 v3.3.0
% Syntax : Number of formulae : 21 ( 7 unt; 0 def)
% Number of atoms : 76 ( 8 equ)
% Maximal formula atoms : 24 ( 3 avg)
% Number of connectives : 72 ( 17 ~; 0 |; 39 &)
% ( 2 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 11 ( 9 usr; 1 prp; 0-3 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-1 aty)
% Number of variables : 44 ( 24 !; 20 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(s1_xboole_0__e11_2_1__waybel_0__1,conjecture,
! [A,B,C] :
( ( ~ empty_carrier(A)
& transitive_relstr(A)
& rel_str(A)
& element(B,powerset(the_carrier(A)))
& finite(C)
& element(C,powerset(B)) )
=> ? [D] :
! [E] :
( in(E,D)
<=> ( in(E,powerset(C))
& ? [F] :
( F = E
& ? [G] :
( element(G,the_carrier(A))
& in(G,B)
& relstr_set_smaller(A,F,G) ) ) ) ) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(rc3_struct_0,axiom,
? [A] :
( one_sorted_str(A)
& ~ empty_carrier(A) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ~ empty(the_carrier(A)) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& ~ empty(B) ) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ empty(A)
& finite(A) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( empty(A)
=> finite(A) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B)
& finite(B) ) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B)
& finite(B) ) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_l1_orders_2,axiom,
! [A] :
( rel_str(A)
=> one_sorted_str(A) ) ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(cc2_finset_1,axiom,
! [A] :
( finite(A)
=> ! [B] :
( element(B,powerset(A))
=> finite(B) ) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(s1_tarski__e11_2_1__waybel_0__1,axiom,
! [A,B,C] :
( ( ~ empty_carrier(A)
& transitive_relstr(A)
& rel_str(A)
& element(B,powerset(the_carrier(A)))
& finite(C)
& element(C,powerset(B)) )
=> ( ! [D,E,F] :
( ( D = E
& ? [G] :
( G = E
& ? [H] :
( element(H,the_carrier(A))
& in(H,B)
& relstr_set_smaller(A,G,H) ) )
& D = F
& ? [I] :
( I = F
& ? [J] :
( element(J,the_carrier(A))
& in(J,B)
& relstr_set_smaller(A,I,J) ) ) )
=> E = F )
=> ? [D] :
! [E] :
( in(E,D)
<=> ? [F] :
( in(F,powerset(C))
& F = E
& ? [K] :
( K = E
& ? [L] :
( element(L,the_carrier(A))
& in(L,B)
& relstr_set_smaller(A,K,L) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------