TPTP Problem File: SEU363+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU363+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t61_yellow_0
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t61_yellow_0 [Urb07]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.39 v8.1.0, 0.44 v7.5.0, 0.41 v7.4.0, 0.30 v7.3.0, 0.38 v7.2.0, 0.41 v7.1.0, 0.35 v7.0.0, 0.43 v6.4.0, 0.46 v6.3.0, 0.42 v6.2.0, 0.56 v6.1.0, 0.63 v6.0.0, 0.52 v5.5.0, 0.63 v5.4.0, 0.68 v5.3.0, 0.70 v5.2.0, 0.60 v5.1.0, 0.57 v5.0.0, 0.71 v4.1.0, 0.70 v4.0.1, 0.65 v4.0.0, 0.67 v3.7.0, 0.60 v3.5.0, 0.58 v3.4.0, 0.74 v3.3.0
% Syntax : Number of formulae : 47 ( 17 unt; 0 def)
% Number of atoms : 107 ( 6 equ)
% Maximal formula atoms : 13 ( 2 avg)
% Number of connectives : 71 ( 11 ~; 1 |; 19 &)
% ( 6 <=>; 34 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 15 ( 13 usr; 1 prp; 0-3 aty)
% Number of functors : 8 ( 8 usr; 1 con; 0-2 aty)
% Number of variables : 82 ( 71 !; 11 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( empty(A)
=> finite(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( element(C,powerset(cartesian_product2(A,B)))
=> relation(C) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( finite(A)
=> ! [B] :
( element(B,powerset(A))
=> finite(B) ) ) ).
fof(d14_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ! [B] :
( subrelstr(B,A)
=> ( full_subrelstr(B,A)
<=> the_InternalRel(B) = relation_restriction_as_relation_of(the_InternalRel(A),the_carrier(B)) ) ) ) ).
fof(d9_orders_2,axiom,
! [A] :
( rel_str(A)
=> ! [B] :
( element(B,the_carrier(A))
=> ! [C] :
( element(C,the_carrier(A))
=> ( related(A,B,C)
<=> in(ordered_pair(B,C),the_InternalRel(A)) ) ) ) ) ).
fof(dt_k1_toler_1,axiom,
! [A,B] :
( relation(A)
=> relation_of2_as_subset(relation_restriction_as_relation_of(A,B),B,B) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_wellord1,axiom,
! [A,B] :
( relation(A)
=> relation(relation_restriction(A,B)) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_l1_orders_2,axiom,
! [A] :
( rel_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m1_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ! [B] :
( subrelstr(B,A)
=> rel_str(B) ) ) ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
=> element(C,powerset(cartesian_product2(A,B))) ) ).
fof(dt_u1_orders_2,axiom,
! [A] :
( rel_str(A)
=> relation_of2_as_subset(the_InternalRel(A),the_carrier(A),the_carrier(A)) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : rel_str(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : one_sorted_str(A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : relation_of2(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(existence_m1_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ? [B] : subrelstr(B,A) ) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : relation_of2_as_subset(C,A,B) ).
fof(fc14_finset_1,axiom,
! [A,B] :
( ( finite(A)
& finite(B) )
=> finite(cartesian_product2(A,B)) ) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ empty(A)
& finite(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B)
& finite(B) ) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B)
& finite(B) ) ) ).
fof(redefinition_k1_toler_1,axiom,
! [A,B] :
( relation(A)
=> relation_restriction_as_relation_of(A,B) = relation_restriction(A,B) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
<=> relation_of2(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t106_zfmisc_1,axiom,
! [A,B,C,D] :
( in(ordered_pair(A,B),cartesian_product2(C,D))
<=> ( in(A,C)
& in(B,D) ) ) ).
fof(t16_wellord1,axiom,
! [A,B,C] :
( relation(C)
=> ( in(A,relation_restriction(C,B))
<=> ( in(A,C)
& in(A,cartesian_product2(B,B)) ) ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t61_yellow_0,conjecture,
! [A] :
( rel_str(A)
=> ! [B] :
( ( full_subrelstr(B,A)
& subrelstr(B,A) )
=> ! [C] :
( element(C,the_carrier(A))
=> ! [D] :
( element(D,the_carrier(A))
=> ! [E] :
( element(E,the_carrier(B))
=> ! [F] :
( element(F,the_carrier(B))
=> ( ( E = C
& F = D
& related(A,C,D)
& in(E,the_carrier(B))
& in(F,the_carrier(B)) )
=> related(B,E,F) ) ) ) ) ) ) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------