TPTP Problem File: SEU362+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU362+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t60_yellow_0
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t60_yellow_0 [Urb07]
% Status : Theorem
% Rating : 0.24 v9.0.0, 0.31 v8.2.0, 0.28 v7.5.0, 0.31 v7.4.0, 0.20 v7.3.0, 0.24 v7.2.0, 0.21 v7.1.0, 0.30 v7.0.0, 0.23 v6.4.0, 0.31 v6.3.0, 0.38 v6.2.0, 0.40 v6.1.0, 0.47 v6.0.0, 0.26 v5.5.0, 0.41 v5.4.0, 0.43 v5.3.0, 0.52 v5.2.0, 0.40 v5.1.0, 0.38 v5.0.0, 0.42 v4.1.0, 0.48 v4.0.1, 0.52 v4.0.0, 0.54 v3.7.0, 0.55 v3.5.0, 0.58 v3.4.0, 0.53 v3.3.0
% Syntax : Number of formulae : 42 ( 17 unt; 0 def)
% Number of atoms : 92 ( 4 equ)
% Maximal formula atoms : 10 ( 2 avg)
% Number of connectives : 61 ( 11 ~; 1 |; 15 &)
% ( 4 <=>; 30 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 14 ( 12 usr; 1 prp; 0-3 aty)
% Number of functors : 6 ( 6 usr; 1 con; 0-2 aty)
% Number of variables : 69 ( 58 !; 11 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( empty(A)
=> finite(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( element(C,powerset(cartesian_product2(A,B)))
=> relation(C) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( finite(A)
=> ! [B] :
( element(B,powerset(A))
=> finite(B) ) ) ).
fof(d13_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ! [B] :
( rel_str(B)
=> ( subrelstr(B,A)
<=> ( subset(the_carrier(B),the_carrier(A))
& subset(the_InternalRel(B),the_InternalRel(A)) ) ) ) ) ).
fof(d9_orders_2,axiom,
! [A] :
( rel_str(A)
=> ! [B] :
( element(B,the_carrier(A))
=> ! [C] :
( element(C,the_carrier(A))
=> ( related(A,B,C)
<=> in(ordered_pair(B,C),the_InternalRel(A)) ) ) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_l1_orders_2,axiom,
! [A] :
( rel_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m1_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ! [B] :
( subrelstr(B,A)
=> rel_str(B) ) ) ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
=> element(C,powerset(cartesian_product2(A,B))) ) ).
fof(dt_u1_orders_2,axiom,
! [A] :
( rel_str(A)
=> relation_of2_as_subset(the_InternalRel(A),the_carrier(A),the_carrier(A)) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : rel_str(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : one_sorted_str(A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : relation_of2(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(existence_m1_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ? [B] : subrelstr(B,A) ) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : relation_of2_as_subset(C,A,B) ).
fof(fc14_finset_1,axiom,
! [A,B] :
( ( finite(A)
& finite(B) )
=> finite(cartesian_product2(A,B)) ) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ empty(A)
& finite(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B)
& finite(B) ) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B)
& finite(B) ) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
<=> relation_of2(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t60_yellow_0,conjecture,
! [A] :
( rel_str(A)
=> ! [B] :
( subrelstr(B,A)
=> ! [C] :
( element(C,the_carrier(A))
=> ! [D] :
( element(D,the_carrier(A))
=> ! [E] :
( element(E,the_carrier(B))
=> ! [F] :
( element(F,the_carrier(B))
=> ( ( E = C
& F = D
& related(B,E,F) )
=> related(A,C,D) ) ) ) ) ) ) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------