TPTP Problem File: SEU353+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU353+1 : TPTP v8.2.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem t91_tmap_1
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-t91_tmap_1 [Urb07]

% Status   : Theorem
% Rating   : 0.33 v8.2.0, 0.31 v7.5.0, 0.34 v7.4.0, 0.17 v7.3.0, 0.31 v7.2.0, 0.28 v7.1.0, 0.26 v7.0.0, 0.23 v6.4.0, 0.27 v6.3.0, 0.29 v6.2.0, 0.32 v6.1.0, 0.37 v6.0.0, 0.26 v5.5.0, 0.41 v5.4.0, 0.46 v5.3.0, 0.52 v5.2.0, 0.40 v5.1.0, 0.38 v5.0.0, 0.46 v4.1.0, 0.43 v4.0.0, 0.46 v3.7.0, 0.40 v3.5.0, 0.42 v3.4.0, 0.37 v3.3.0
% Syntax   : Number of formulae    :   57 (  19 unt;   0 def)
%            Number of atoms       :  173 (   7 equ)
%            Maximal formula atoms :   10 (   3 avg)
%            Number of connectives :  140 (  24   ~;   1   |;  80   &)
%                                         (   2 <=>;  33  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   5 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   21 (  19 usr;   1 prp; 0-3 aty)
%            Number of functors    :    9 (   9 usr;   1 con; 0-4 aty)
%            Number of variables   :   99 (  84   !;  15   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(cc1_funct_2,axiom,
    ! [A,B,C] :
      ( relation_of2(C,A,B)
     => ( ( function(C)
          & v1_partfun1(C,A,B) )
       => ( function(C)
          & quasi_total(C,A,B) ) ) ) ).

fof(cc1_partfun1,axiom,
    ! [A] :
      ( ( relation(A)
        & symmetric(A)
        & transitive(A) )
     => ( relation(A)
        & reflexive(A) ) ) ).

fof(cc1_relset_1,axiom,
    ! [A,B,C] :
      ( element(C,powerset(cartesian_product2(A,B)))
     => relation(C) ) ).

fof(cc2_funct_2,axiom,
    ! [A,B,C] :
      ( relation_of2(C,A,B)
     => ( ( function(C)
          & quasi_total(C,A,B)
          & bijective(C,A,B) )
       => ( function(C)
          & one_to_one(C)
          & quasi_total(C,A,B)
          & onto(C,A,B) ) ) ) ).

fof(cc3_funct_2,axiom,
    ! [A,B,C] :
      ( relation_of2(C,A,B)
     => ( ( function(C)
          & one_to_one(C)
          & quasi_total(C,A,B)
          & onto(C,A,B) )
       => ( function(C)
          & quasi_total(C,A,B)
          & bijective(C,A,B) ) ) ) ).

fof(cc4_funct_2,axiom,
    ! [A,B] :
      ( relation_of2(B,A,A)
     => ( ( function(B)
          & v1_partfun1(B,A,A)
          & reflexive(B)
          & quasi_total(B,A,A) )
       => ( function(B)
          & one_to_one(B)
          & quasi_total(B,A,A)
          & onto(B,A,A)
          & bijective(B,A,A) ) ) ) ).

fof(cc5_funct_2,axiom,
    ! [A,B] :
      ( ~ empty(B)
     => ! [C] :
          ( relation_of2(C,A,B)
         => ( ( function(C)
              & quasi_total(C,A,B) )
           => ( function(C)
              & v1_partfun1(C,A,B)
              & quasi_total(C,A,B) ) ) ) ) ).

fof(cc6_funct_2,axiom,
    ! [A,B] :
      ( ( ~ empty(A)
        & ~ empty(B) )
     => ! [C] :
          ( relation_of2(C,A,B)
         => ( ( function(C)
              & quasi_total(C,A,B) )
           => ( function(C)
              & ~ empty(C)
              & v1_partfun1(C,A,B)
              & quasi_total(C,A,B) ) ) ) ) ).

fof(d11_grcat_1,axiom,
    ! [A] :
      ( one_sorted_str(A)
     => identity_on_carrier(A) = identity_as_relation_of(the_carrier(A)) ) ).

fof(dt_k1_funct_1,axiom,
    $true ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_zfmisc_1,axiom,
    $true ).

fof(dt_k6_partfun1,axiom,
    ! [A] :
      ( v1_partfun1(identity_as_relation_of(A),A,A)
      & relation_of2_as_subset(identity_as_relation_of(A),A,A) ) ).

fof(dt_k6_relat_1,axiom,
    ! [A] : relation(identity_relation(A)) ).

fof(dt_k7_grcat_1,axiom,
    ! [A] :
      ( one_sorted_str(A)
     => ( function(identity_on_carrier(A))
        & quasi_total(identity_on_carrier(A),the_carrier(A),the_carrier(A))
        & relation_of2_as_subset(identity_on_carrier(A),the_carrier(A),the_carrier(A)) ) ) ).

fof(dt_k8_funct_2,axiom,
    ! [A,B,C,D] :
      ( ( ~ empty(A)
        & function(C)
        & quasi_total(C,A,B)
        & relation_of2(C,A,B)
        & element(D,A) )
     => element(apply_as_element(A,B,C,D),B) ) ).

fof(dt_l1_struct_0,axiom,
    $true ).

fof(dt_m1_relset_1,axiom,
    $true ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(dt_m2_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2_as_subset(C,A,B)
     => element(C,powerset(cartesian_product2(A,B))) ) ).

fof(dt_u1_struct_0,axiom,
    $true ).

fof(existence_l1_struct_0,axiom,
    ? [A] : one_sorted_str(A) ).

fof(existence_m1_relset_1,axiom,
    ! [A,B] :
    ? [C] : relation_of2(C,A,B) ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : element(B,A) ).

fof(existence_m2_relset_1,axiom,
    ! [A,B] :
    ? [C] : relation_of2_as_subset(C,A,B) ).

fof(fc1_struct_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ~ empty(the_carrier(A)) ) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ empty(powerset(A)) ).

fof(fc1_xboole_0,axiom,
    empty(empty_set) ).

fof(fc2_partfun1,axiom,
    ! [A] :
      ( relation(identity_relation(A))
      & function(identity_relation(A))
      & reflexive(identity_relation(A))
      & symmetric(identity_relation(A))
      & antisymmetric(identity_relation(A))
      & transitive(identity_relation(A)) ) ).

fof(fc4_subset_1,axiom,
    ! [A,B] :
      ( ( ~ empty(A)
        & ~ empty(B) )
     => ~ empty(cartesian_product2(A,B)) ) ).

fof(rc1_funct_2,axiom,
    ! [A,B] :
    ? [C] :
      ( relation_of2(C,A,B)
      & relation(C)
      & function(C)
      & quasi_total(C,A,B) ) ).

fof(rc1_partfun1,axiom,
    ? [A] :
      ( relation(A)
      & function(A)
      & one_to_one(A)
      & empty(A) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B) ) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : empty(A) ).

fof(rc2_funct_2,axiom,
    ! [A] :
    ? [B] :
      ( relation_of2(B,A,A)
      & relation(B)
      & function(B)
      & one_to_one(B)
      & quasi_total(B,A,A)
      & onto(B,A,A)
      & bijective(B,A,A) ) ).

fof(rc2_partfun1,axiom,
    ! [A,B] :
    ? [C] :
      ( relation_of2(C,A,B)
      & relation(C)
      & function(C) ) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( element(B,powerset(A))
      & empty(B) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ empty(A) ).

fof(rc3_partfun1,axiom,
    ! [A] :
    ? [B] :
      ( relation_of2(B,A,A)
      & relation(B)
      & reflexive(B)
      & symmetric(B)
      & antisymmetric(B)
      & transitive(B)
      & v1_partfun1(B,A,A) ) ).

fof(rc3_struct_0,axiom,
    ? [A] :
      ( one_sorted_str(A)
      & ~ empty_carrier(A) ) ).

fof(rc5_struct_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & ~ empty(B) ) ) ).

fof(redefinition_k6_partfun1,axiom,
    ! [A] : identity_as_relation_of(A) = identity_relation(A) ).

fof(redefinition_k8_funct_2,axiom,
    ! [A,B,C,D] :
      ( ( ~ empty(A)
        & function(C)
        & quasi_total(C,A,B)
        & relation_of2(C,A,B)
        & element(D,A) )
     => apply_as_element(A,B,C,D) = apply(C,D) ) ).

fof(redefinition_m2_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2_as_subset(C,A,B)
    <=> relation_of2(C,A,B) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( element(A,B)
     => ( empty(B)
        | in(A,B) ) ) ).

fof(t35_funct_1,axiom,
    ! [A,B] :
      ( in(B,A)
     => apply(identity_relation(A),B) = B ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( element(A,powerset(B))
    <=> subset(A,B) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( in(A,B)
        & element(B,powerset(C)) )
     => element(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( in(A,B)
        & element(B,powerset(C))
        & empty(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( empty(A)
     => A = empty_set ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & empty(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( empty(A)
        & A != B
        & empty(B) ) ).

fof(t91_tmap_1,conjecture,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ! [B] :
          ( element(B,the_carrier(A))
         => apply_as_element(the_carrier(A),the_carrier(A),identity_on_carrier(A),B) = B ) ) ).

%------------------------------------------------------------------------------