TPTP Problem File: SEU346+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU346+1 : TPTP v8.2.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem t7_lattice3
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-t7_lattice3 [Urb07]

% Status   : Theorem
% Rating   : 0.58 v8.2.0, 0.61 v8.1.0, 0.56 v7.4.0, 0.47 v7.3.0, 0.55 v7.1.0, 0.48 v7.0.0, 0.53 v6.4.0, 0.62 v6.3.0, 0.50 v6.2.0, 0.60 v6.1.0, 0.67 v6.0.0, 0.65 v5.5.0, 0.74 v5.4.0, 0.75 v5.3.0, 0.78 v5.2.0, 0.65 v5.1.0, 0.71 v5.0.0, 0.79 v4.1.0, 0.78 v4.0.0, 0.79 v3.7.0, 0.80 v3.5.0, 0.79 v3.4.0, 0.84 v3.3.0
% Syntax   : Number of formulae    :   93 (  27 unt;   0 def)
%            Number of atoms       :  357 (  18 equ)
%            Maximal formula atoms :   10 (   3 avg)
%            Number of connectives :  323 (  59   ~;   1   |; 189   &)
%                                         (   7 <=>;  67  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   13 (   5 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   39 (  37 usr;   1 prp; 0-3 aty)
%            Number of functors    :   19 (  19 usr;   1 con; 0-4 aty)
%            Number of variables   :  155 ( 136   !;  19   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(abstractness_v1_orders_2,axiom,
    ! [A] :
      ( rel_str(A)
     => ( strict_rel_str(A)
       => A = rel_str_of(the_carrier(A),the_InternalRel(A)) ) ) ).

fof(abstractness_v3_lattices,axiom,
    ! [A] :
      ( latt_str(A)
     => ( strict_latt_str(A)
       => A = latt_str_of(the_carrier(A),the_L_join(A),the_L_meet(A)) ) ) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(cc1_lattices,axiom,
    ! [A] :
      ( latt_str(A)
     => ( ( ~ empty_carrier(A)
          & lattice(A) )
       => ( ~ empty_carrier(A)
          & join_commutative(A)
          & join_associative(A)
          & meet_commutative(A)
          & meet_associative(A)
          & meet_absorbing(A)
          & join_absorbing(A) ) ) ) ).

fof(cc1_relset_1,axiom,
    ! [A,B,C] :
      ( element(C,powerset(cartesian_product2(A,B)))
     => relation(C) ) ).

fof(cc2_lattices,axiom,
    ! [A] :
      ( latt_str(A)
     => ( ( ~ empty_carrier(A)
          & join_commutative(A)
          & join_associative(A)
          & meet_commutative(A)
          & meet_associative(A)
          & meet_absorbing(A)
          & join_absorbing(A) )
       => ( ~ empty_carrier(A)
          & lattice(A) ) ) ) ).

fof(commutativity_k2_tarski,axiom,
    ! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).

fof(d2_lattice3,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => poset_of_lattice(A) = rel_str_of(the_carrier(A),k2_lattice3(A)) ) ).

fof(d3_lattice3,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => ! [B] :
          ( element(B,the_carrier(A))
         => cast_to_el_of_LattPOSet(A,B) = B ) ) ).

fof(d5_tarski,axiom,
    ! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).

fof(d9_orders_2,axiom,
    ! [A] :
      ( rel_str(A)
     => ! [B] :
          ( element(B,the_carrier(A))
         => ! [C] :
              ( element(C,the_carrier(A))
             => ( related(A,B,C)
              <=> in(ordered_pair(B,C),the_InternalRel(A)) ) ) ) ) ).

fof(dt_g1_orders_2,axiom,
    ! [A,B] :
      ( relation_of2(B,A,A)
     => ( strict_rel_str(rel_str_of(A,B))
        & rel_str(rel_str_of(A,B)) ) ) ).

fof(dt_g3_lattices,axiom,
    ! [A,B,C] :
      ( ( function(B)
        & quasi_total(B,cartesian_product2(A,A),A)
        & relation_of2(B,cartesian_product2(A,A),A)
        & function(C)
        & quasi_total(C,cartesian_product2(A,A),A)
        & relation_of2(C,cartesian_product2(A,A),A) )
     => ( strict_latt_str(latt_str_of(A,B,C))
        & latt_str(latt_str_of(A,B,C)) ) ) ).

fof(dt_k10_filter_1,axiom,
    ! [A,B,C,D] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A)
        & ~ empty_carrier(B)
        & lattice(B)
        & latt_str(B)
        & element(C,the_carrier(A))
        & element(D,the_carrier(B)) )
     => element(k10_filter_1(A,B,C,D),the_carrier(k8_filter_1(A,B))) ) ).

fof(dt_k1_domain_1,axiom,
    ! [A,B,C,D] :
      ( ( ~ empty(A)
        & ~ empty(B)
        & element(C,A)
        & element(D,B) )
     => element(ordered_pair_as_product_element(A,B,C,D),cartesian_product2(A,B)) ) ).

fof(dt_k1_tarski,axiom,
    $true ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_lattice3,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => ( reflexive(k2_lattice3(A))
        & antisymmetric(k2_lattice3(A))
        & transitive(k2_lattice3(A))
        & v1_partfun1(k2_lattice3(A),the_carrier(A),the_carrier(A))
        & relation_of2_as_subset(k2_lattice3(A),the_carrier(A),the_carrier(A)) ) ) ).

fof(dt_k2_tarski,axiom,
    $true ).

fof(dt_k2_zfmisc_1,axiom,
    $true ).

fof(dt_k3_lattice3,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => ( strict_rel_str(poset_of_lattice(A))
        & reflexive_relstr(poset_of_lattice(A))
        & transitive_relstr(poset_of_lattice(A))
        & antisymmetric_relstr(poset_of_lattice(A))
        & rel_str(poset_of_lattice(A)) ) ) ).

fof(dt_k4_lattice3,axiom,
    ! [A,B] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A)
        & element(B,the_carrier(A)) )
     => element(cast_to_el_of_LattPOSet(A,B),the_carrier(poset_of_lattice(A))) ) ).

fof(dt_k4_tarski,axiom,
    $true ).

fof(dt_k8_filter_1,axiom,
    ! [A,B] :
      ( ( ~ empty_carrier(A)
        & latt_str(A)
        & ~ empty_carrier(B)
        & latt_str(B) )
     => ( strict_latt_str(k8_filter_1(A,B))
        & latt_str(k8_filter_1(A,B)) ) ) ).

fof(dt_k9_filter_1,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => relation(relation_of_lattice(A)) ) ).

fof(dt_l1_lattices,axiom,
    ! [A] :
      ( meet_semilatt_str(A)
     => one_sorted_str(A) ) ).

fof(dt_l1_orders_2,axiom,
    ! [A] :
      ( rel_str(A)
     => one_sorted_str(A) ) ).

fof(dt_l1_struct_0,axiom,
    $true ).

fof(dt_l2_lattices,axiom,
    ! [A] :
      ( join_semilatt_str(A)
     => one_sorted_str(A) ) ).

fof(dt_l3_lattices,axiom,
    ! [A] :
      ( latt_str(A)
     => ( meet_semilatt_str(A)
        & join_semilatt_str(A) ) ) ).

fof(dt_m1_relset_1,axiom,
    $true ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(dt_m2_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2_as_subset(C,A,B)
     => element(C,powerset(cartesian_product2(A,B))) ) ).

fof(dt_u1_lattices,axiom,
    ! [A] :
      ( meet_semilatt_str(A)
     => ( function(the_L_meet(A))
        & quasi_total(the_L_meet(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A))
        & relation_of2_as_subset(the_L_meet(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A)) ) ) ).

fof(dt_u1_orders_2,axiom,
    ! [A] :
      ( rel_str(A)
     => relation_of2_as_subset(the_InternalRel(A),the_carrier(A),the_carrier(A)) ) ).

fof(dt_u1_struct_0,axiom,
    $true ).

fof(dt_u2_lattices,axiom,
    ! [A] :
      ( join_semilatt_str(A)
     => ( function(the_L_join(A))
        & quasi_total(the_L_join(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A))
        & relation_of2_as_subset(the_L_join(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A)) ) ) ).

fof(existence_l1_lattices,axiom,
    ? [A] : meet_semilatt_str(A) ).

fof(existence_l1_orders_2,axiom,
    ? [A] : rel_str(A) ).

fof(existence_l1_struct_0,axiom,
    ? [A] : one_sorted_str(A) ).

fof(existence_l2_lattices,axiom,
    ? [A] : join_semilatt_str(A) ).

fof(existence_l3_lattices,axiom,
    ? [A] : latt_str(A) ).

fof(existence_m1_relset_1,axiom,
    ! [A,B] :
    ? [C] : relation_of2(C,A,B) ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : element(B,A) ).

fof(existence_m2_relset_1,axiom,
    ! [A,B] :
    ? [C] : relation_of2_as_subset(C,A,B) ).

fof(fc1_orders_2,axiom,
    ! [A,B] :
      ( ( ~ empty(A)
        & relation_of2(B,A,A) )
     => ( ~ empty_carrier(rel_str_of(A,B))
        & strict_rel_str(rel_str_of(A,B)) ) ) ).

fof(fc1_struct_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ~ empty(the_carrier(A)) ) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ empty(powerset(A)) ).

fof(fc1_xboole_0,axiom,
    empty(empty_set) ).

fof(fc2_lattice2,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & join_commutative(A)
        & join_semilatt_str(A) )
     => ( relation(the_L_join(A))
        & function(the_L_join(A))
        & quasi_total(the_L_join(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A))
        & v1_binop_1(the_L_join(A),the_carrier(A))
        & v1_partfun1(the_L_join(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A)) ) ) ).

fof(fc2_orders_2,axiom,
    ! [A] :
      ( ( reflexive_relstr(A)
        & transitive_relstr(A)
        & antisymmetric_relstr(A)
        & rel_str(A) )
     => ( relation(the_InternalRel(A))
        & reflexive(the_InternalRel(A))
        & antisymmetric(the_InternalRel(A))
        & transitive(the_InternalRel(A))
        & v1_partfun1(the_InternalRel(A),the_carrier(A),the_carrier(A)) ) ) ).

fof(fc2_subset_1,axiom,
    ! [A] : ~ empty(singleton(A)) ).

fof(fc3_lattice2,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & join_associative(A)
        & join_semilatt_str(A) )
     => ( relation(the_L_join(A))
        & function(the_L_join(A))
        & quasi_total(the_L_join(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A))
        & v2_binop_1(the_L_join(A),the_carrier(A))
        & v1_partfun1(the_L_join(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A)) ) ) ).

fof(fc3_lattices,axiom,
    ! [A,B,C] :
      ( ( ~ empty(A)
        & function(B)
        & quasi_total(B,cartesian_product2(A,A),A)
        & relation_of2(B,cartesian_product2(A,A),A)
        & function(C)
        & quasi_total(C,cartesian_product2(A,A),A)
        & relation_of2(C,cartesian_product2(A,A),A) )
     => ( ~ empty_carrier(latt_str_of(A,B,C))
        & strict_latt_str(latt_str_of(A,B,C)) ) ) ).

fof(fc3_orders_2,axiom,
    ! [A,B] :
      ( ( reflexive(B)
        & antisymmetric(B)
        & transitive(B)
        & v1_partfun1(B,A,A)
        & relation_of2(B,A,A) )
     => ( strict_rel_str(rel_str_of(A,B))
        & reflexive_relstr(rel_str_of(A,B))
        & transitive_relstr(rel_str_of(A,B))
        & antisymmetric_relstr(rel_str_of(A,B)) ) ) ).

fof(fc3_subset_1,axiom,
    ! [A,B] : ~ empty(unordered_pair(A,B)) ).

fof(fc4_lattice2,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & meet_commutative(A)
        & meet_semilatt_str(A) )
     => ( relation(the_L_meet(A))
        & function(the_L_meet(A))
        & quasi_total(the_L_meet(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A))
        & v1_binop_1(the_L_meet(A),the_carrier(A))
        & v1_partfun1(the_L_meet(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A)) ) ) ).

fof(fc4_lattice3,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => ( ~ empty_carrier(poset_of_lattice(A))
        & strict_rel_str(poset_of_lattice(A))
        & reflexive_relstr(poset_of_lattice(A))
        & transitive_relstr(poset_of_lattice(A))
        & antisymmetric_relstr(poset_of_lattice(A)) ) ) ).

fof(fc4_subset_1,axiom,
    ! [A,B] :
      ( ( ~ empty(A)
        & ~ empty(B) )
     => ~ empty(cartesian_product2(A,B)) ) ).

fof(fc5_lattice2,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & meet_associative(A)
        & meet_semilatt_str(A) )
     => ( relation(the_L_meet(A))
        & function(the_L_meet(A))
        & quasi_total(the_L_meet(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A))
        & v2_binop_1(the_L_meet(A),the_carrier(A))
        & v1_partfun1(the_L_meet(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A)) ) ) ).

fof(free_g1_orders_2,axiom,
    ! [A,B] :
      ( relation_of2(B,A,A)
     => ! [C,D] :
          ( rel_str_of(A,B) = rel_str_of(C,D)
         => ( A = C
            & B = D ) ) ) ).

fof(free_g3_lattices,axiom,
    ! [A,B,C] :
      ( ( function(B)
        & quasi_total(B,cartesian_product2(A,A),A)
        & relation_of2(B,cartesian_product2(A,A),A)
        & function(C)
        & quasi_total(C,cartesian_product2(A,A),A)
        & relation_of2(C,cartesian_product2(A,A),A) )
     => ! [D,E,F] :
          ( latt_str_of(A,B,C) = latt_str_of(D,E,F)
         => ( A = D
            & B = E
            & C = F ) ) ) ).

fof(rc1_orders_2,axiom,
    ? [A] :
      ( rel_str(A)
      & strict_rel_str(A) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B) ) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : empty(A) ).

fof(rc2_orders_2,axiom,
    ? [A] :
      ( rel_str(A)
      & ~ empty_carrier(A)
      & strict_rel_str(A)
      & reflexive_relstr(A)
      & transitive_relstr(A)
      & antisymmetric_relstr(A) ) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( element(B,powerset(A))
      & empty(B) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ empty(A) ).

fof(rc3_lattices,axiom,
    ? [A] :
      ( latt_str(A)
      & strict_latt_str(A) ) ).

fof(rc3_struct_0,axiom,
    ? [A] :
      ( one_sorted_str(A)
      & ~ empty_carrier(A) ) ).

fof(rc5_struct_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & ~ empty(B) ) ) ).

fof(rc6_lattices,axiom,
    ? [A] :
      ( latt_str(A)
      & ~ empty_carrier(A)
      & strict_latt_str(A) ) ).

fof(rc9_lattices,axiom,
    ? [A] :
      ( latt_str(A)
      & ~ empty_carrier(A)
      & strict_latt_str(A)
      & join_commutative(A)
      & join_associative(A)
      & meet_commutative(A)
      & meet_associative(A)
      & meet_absorbing(A)
      & join_absorbing(A)
      & lattice(A) ) ).

fof(redefinition_k10_filter_1,axiom,
    ! [A,B,C,D] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A)
        & ~ empty_carrier(B)
        & lattice(B)
        & latt_str(B)
        & element(C,the_carrier(A))
        & element(D,the_carrier(B)) )
     => k10_filter_1(A,B,C,D) = ordered_pair(C,D) ) ).

fof(redefinition_k1_domain_1,axiom,
    ! [A,B,C,D] :
      ( ( ~ empty(A)
        & ~ empty(B)
        & element(C,A)
        & element(D,B) )
     => ordered_pair_as_product_element(A,B,C,D) = ordered_pair(C,D) ) ).

fof(redefinition_k2_lattice3,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => k2_lattice3(A) = relation_of_lattice(A) ) ).

fof(redefinition_m2_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2_as_subset(C,A,B)
    <=> relation_of2(C,A,B) ) ).

fof(redefinition_r3_lattices,axiom,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & meet_commutative(A)
        & meet_absorbing(A)
        & join_absorbing(A)
        & latt_str(A)
        & element(B,the_carrier(A))
        & element(C,the_carrier(A)) )
     => ( below_refl(A,B,C)
      <=> below(A,B,C) ) ) ).

fof(redefinition_r3_orders_2,axiom,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & reflexive_relstr(A)
        & rel_str(A)
        & element(B,the_carrier(A))
        & element(C,the_carrier(A)) )
     => ( related_reflexive(A,B,C)
      <=> related(A,B,C) ) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(reflexivity_r3_lattices,axiom,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & meet_commutative(A)
        & meet_absorbing(A)
        & join_absorbing(A)
        & latt_str(A)
        & element(B,the_carrier(A))
        & element(C,the_carrier(A)) )
     => below_refl(A,B,B) ) ).

fof(reflexivity_r3_orders_2,axiom,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & reflexive_relstr(A)
        & rel_str(A)
        & element(B,the_carrier(A))
        & element(C,the_carrier(A)) )
     => related_reflexive(A,B,B) ) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( element(A,B)
     => ( empty(B)
        | in(A,B) ) ) ).

fof(t32_filter_1,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => ! [B] :
          ( element(B,the_carrier(A))
         => ! [C] :
              ( element(C,the_carrier(A))
             => ( in(ordered_pair_as_product_element(the_carrier(A),the_carrier(A),B,C),relation_of_lattice(A))
              <=> below_refl(A,B,C) ) ) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( element(A,powerset(B))
    <=> subset(A,B) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( in(A,B)
        & element(B,powerset(C)) )
     => element(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( in(A,B)
        & element(B,powerset(C))
        & empty(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( empty(A)
     => A = empty_set ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & empty(B) ) ).

fof(t7_lattice3,conjecture,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => ! [B] :
          ( element(B,the_carrier(A))
         => ! [C] :
              ( element(C,the_carrier(A))
             => ( below_refl(A,B,C)
              <=> related_reflexive(poset_of_lattice(A),cast_to_el_of_LattPOSet(A,B),cast_to_el_of_LattPOSet(A,C)) ) ) ) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( empty(A)
        & A != B
        & empty(B) ) ).

%------------------------------------------------------------------------------