TPTP Problem File: SEU268+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU268+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t2_wellord2
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t2_wellord2 [Urb07]
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.31 v8.1.0, 0.25 v7.5.0, 0.28 v7.4.0, 0.13 v7.3.0, 0.21 v7.2.0, 0.17 v7.1.0, 0.22 v7.0.0, 0.20 v6.4.0, 0.23 v6.3.0, 0.33 v6.2.0, 0.36 v6.1.0, 0.47 v6.0.0, 0.39 v5.5.0, 0.52 v5.4.0, 0.54 v5.3.0, 0.59 v5.2.0, 0.35 v5.1.0, 0.38 v5.0.0, 0.50 v4.1.0, 0.43 v4.0.0, 0.46 v3.7.0, 0.45 v3.5.0, 0.47 v3.4.0, 0.53 v3.3.0
% Syntax : Number of formulae : 51 ( 23 unt; 0 def)
% Number of atoms : 116 ( 10 equ)
% Maximal formula atoms : 8 ( 2 avg)
% Number of connectives : 77 ( 12 ~; 1 |; 41 &)
% ( 5 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 15 ( 13 usr; 1 prp; 0-2 aty)
% Number of functors : 10 ( 10 usr; 1 con; 0-2 aty)
% Number of variables : 63 ( 53 !; 10 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(d1_relat_2,axiom,
! [A] :
( relation(A)
=> ! [B] :
( is_reflexive_in(A,B)
<=> ! [C] :
( in(C,B)
=> in(ordered_pair(C,C),A) ) ) ) ).
fof(d1_wellord2,axiom,
! [A,B] :
( relation(B)
=> ( B = inclusion_relation(A)
<=> ( relation_field(B) = A
& ! [C,D] :
( ( in(C,A)
& in(D,A) )
=> ( in(ordered_pair(C,D),B)
<=> subset(C,D) ) ) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(d6_relat_1,axiom,
! [A] :
( relation(A)
=> relation_field(A) = set_union2(relation_dom(A),relation_rng(A)) ) ).
fof(d9_relat_2,axiom,
! [A] :
( relation(A)
=> ( reflexive(A)
<=> is_reflexive_in(A,relation_field(A)) ) ) ).
fof(dt_k1_relat_1,axiom,
$true ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_wellord2,axiom,
! [A] : relation(inclusion_relation(A)) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_relat_1,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k2_xboole_0,axiom,
$true ).
fof(dt_k3_relat_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(fc2_ordinal1,axiom,
( relation(empty_set)
& relation_empty_yielding(empty_set)
& function(empty_set)
& one_to_one(empty_set)
& empty(empty_set)
& epsilon_transitive(empty_set)
& epsilon_connected(empty_set)
& ordinal(empty_set) ) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A)
& function(A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t1_boole,axiom,
! [A] : set_union2(A,empty_set) = A ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t2_wellord2,conjecture,
! [A] : reflexive(inclusion_relation(A)) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------