TPTP Problem File: SEU264+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU264+2 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP chainy problem t16_relset_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : chainy-t16_relset_1 [Urb07]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.42 v7.5.0, 0.44 v7.4.0, 0.37 v7.3.0, 0.38 v7.2.0, 0.34 v7.1.0, 0.39 v7.0.0, 0.30 v6.4.0, 0.35 v6.3.0, 0.42 v6.2.0, 0.44 v6.1.0, 0.60 v6.0.0, 0.57 v5.5.0, 0.59 v5.4.0, 0.64 v5.3.0, 0.70 v5.2.0, 0.55 v5.1.0, 0.52 v5.0.0, 0.54 v4.1.0, 0.57 v4.0.1, 0.52 v4.0.0, 0.54 v3.7.0, 0.55 v3.5.0, 0.58 v3.4.0, 0.63 v3.3.0
% Syntax : Number of formulae : 331 ( 61 unt; 0 def)
% Number of atoms : 1050 ( 177 equ)
% Maximal formula atoms : 15 ( 3 avg)
% Number of connectives : 828 ( 109 ~; 8 |; 276 &)
% ( 119 <=>; 316 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 33 ( 31 usr; 1 prp; 0-3 aty)
% Number of functors : 33 ( 33 usr; 1 con; 0-3 aty)
% Number of variables : 716 ( 682 !; 34 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(antisymmetry_r2_xboole_0,axiom,
! [A,B] :
( proper_subset(A,B)
=> ~ proper_subset(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( element(C,powerset(cartesian_product2(A,B)))
=> relation(C) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(connectedness_r1_ordinal1,axiom,
! [A,B] :
( ( ordinal(A)
& ordinal(B) )
=> ( ordinal_subset(A,B)
| ordinal_subset(B,A) ) ) ).
fof(d10_relat_1,axiom,
! [A,B] :
( relation(B)
=> ( B = identity_relation(A)
<=> ! [C,D] :
( in(ordered_pair(C,D),B)
<=> ( in(C,A)
& C = D ) ) ) ) ).
fof(d10_xboole_0,axiom,
! [A,B] :
( A = B
<=> ( subset(A,B)
& subset(B,A) ) ) ).
fof(d11_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B,C] :
( relation(C)
=> ( C = relation_dom_restriction(A,B)
<=> ! [D,E] :
( in(ordered_pair(D,E),C)
<=> ( in(D,B)
& in(ordered_pair(D,E),A) ) ) ) ) ) ).
fof(d12_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ! [B,C] :
( C = relation_image(A,B)
<=> ! [D] :
( in(D,C)
<=> ? [E] :
( in(E,relation_dom(A))
& in(E,B)
& D = apply(A,E) ) ) ) ) ).
fof(d12_relat_1,axiom,
! [A,B] :
( relation(B)
=> ! [C] :
( relation(C)
=> ( C = relation_rng_restriction(A,B)
<=> ! [D,E] :
( in(ordered_pair(D,E),C)
<=> ( in(E,A)
& in(ordered_pair(D,E),B) ) ) ) ) ) ).
fof(d12_relat_2,axiom,
! [A] :
( relation(A)
=> ( antisymmetric(A)
<=> is_antisymmetric_in(A,relation_field(A)) ) ) ).
fof(d13_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ! [B,C] :
( C = relation_inverse_image(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,relation_dom(A))
& in(apply(A,D),B) ) ) ) ) ).
fof(d13_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B,C] :
( C = relation_image(A,B)
<=> ! [D] :
( in(D,C)
<=> ? [E] :
( in(ordered_pair(E,D),A)
& in(E,B) ) ) ) ) ).
fof(d14_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B,C] :
( C = relation_inverse_image(A,B)
<=> ! [D] :
( in(D,C)
<=> ? [E] :
( in(ordered_pair(D,E),A)
& in(E,B) ) ) ) ) ).
fof(d14_relat_2,axiom,
! [A] :
( relation(A)
=> ( connected(A)
<=> is_connected_in(A,relation_field(A)) ) ) ).
fof(d16_relat_2,axiom,
! [A] :
( relation(A)
=> ( transitive(A)
<=> is_transitive_in(A,relation_field(A)) ) ) ).
fof(d1_enumset1,axiom,
! [A,B,C,D] :
( D = unordered_triple(A,B,C)
<=> ! [E] :
( in(E,D)
<=> ~ ( E != A
& E != B
& E != C ) ) ) ).
fof(d1_ordinal1,axiom,
! [A] : succ(A) = set_union2(A,singleton(A)) ).
fof(d1_relat_1,axiom,
! [A] :
( relation(A)
<=> ! [B] :
~ ( in(B,A)
& ! [C,D] : B != ordered_pair(C,D) ) ) ).
fof(d1_relat_2,axiom,
! [A] :
( relation(A)
=> ! [B] :
( is_reflexive_in(A,B)
<=> ! [C] :
( in(C,B)
=> in(ordered_pair(C,C),A) ) ) ) ).
fof(d1_relset_1,axiom,
! [A,B,C] :
( relation_of2(C,A,B)
<=> subset(C,cartesian_product2(A,B)) ) ).
fof(d1_setfam_1,axiom,
! [A,B] :
( ( A != empty_set
=> ( B = set_meet(A)
<=> ! [C] :
( in(C,B)
<=> ! [D] :
( in(D,A)
=> in(C,D) ) ) ) )
& ( A = empty_set
=> ( B = set_meet(A)
<=> B = empty_set ) ) ) ).
fof(d1_tarski,axiom,
! [A,B] :
( B = singleton(A)
<=> ! [C] :
( in(C,B)
<=> C = A ) ) ).
fof(d1_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B,C] :
( C = fiber(A,B)
<=> ! [D] :
( in(D,C)
<=> ( D != B
& in(ordered_pair(D,B),A) ) ) ) ) ).
fof(d1_xboole_0,axiom,
! [A] :
( A = empty_set
<=> ! [B] : ~ in(B,A) ) ).
fof(d1_zfmisc_1,axiom,
! [A,B] :
( B = powerset(A)
<=> ! [C] :
( in(C,B)
<=> subset(C,A) ) ) ).
fof(d2_ordinal1,axiom,
! [A] :
( epsilon_transitive(A)
<=> ! [B] :
( in(B,A)
=> subset(B,A) ) ) ).
fof(d2_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ( A = B
<=> ! [C,D] :
( in(ordered_pair(C,D),A)
<=> in(ordered_pair(C,D),B) ) ) ) ) ).
fof(d2_subset_1,axiom,
! [A,B] :
( ( ~ empty(A)
=> ( element(B,A)
<=> in(B,A) ) )
& ( empty(A)
=> ( element(B,A)
<=> empty(B) ) ) ) ).
fof(d2_tarski,axiom,
! [A,B,C] :
( C = unordered_pair(A,B)
<=> ! [D] :
( in(D,C)
<=> ( D = A
| D = B ) ) ) ).
fof(d2_wellord1,axiom,
! [A] :
( relation(A)
=> ( well_founded_relation(A)
<=> ! [B] :
~ ( subset(B,relation_field(A))
& B != empty_set
& ! [C] :
~ ( in(C,B)
& disjoint(fiber(A,C),B) ) ) ) ) ).
fof(d2_xboole_0,axiom,
! [A,B,C] :
( C = set_union2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
| in(D,B) ) ) ) ).
fof(d2_zfmisc_1,axiom,
! [A,B,C] :
( C = cartesian_product2(A,B)
<=> ! [D] :
( in(D,C)
<=> ? [E,F] :
( in(E,A)
& in(F,B)
& D = ordered_pair(E,F) ) ) ) ).
fof(d3_ordinal1,axiom,
! [A] :
( epsilon_connected(A)
<=> ! [B,C] :
~ ( in(B,A)
& in(C,A)
& ~ in(B,C)
& B != C
& ~ in(C,B) ) ) ).
fof(d3_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ( subset(A,B)
<=> ! [C,D] :
( in(ordered_pair(C,D),A)
=> in(ordered_pair(C,D),B) ) ) ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(d3_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( is_well_founded_in(A,B)
<=> ! [C] :
~ ( subset(C,B)
& C != empty_set
& ! [D] :
~ ( in(D,C)
& disjoint(fiber(A,D),C) ) ) ) ) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = set_intersection2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& in(D,B) ) ) ) ).
fof(d4_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ! [B,C] :
( ( in(B,relation_dom(A))
=> ( C = apply(A,B)
<=> in(ordered_pair(B,C),A) ) )
& ( ~ in(B,relation_dom(A))
=> ( C = apply(A,B)
<=> C = empty_set ) ) ) ) ).
fof(d4_ordinal1,axiom,
! [A] :
( ordinal(A)
<=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(d4_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( B = relation_dom(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] : in(ordered_pair(C,D),A) ) ) ) ).
fof(d4_relat_2,axiom,
! [A] :
( relation(A)
=> ! [B] :
( is_antisymmetric_in(A,B)
<=> ! [C,D] :
( ( in(C,B)
& in(D,B)
& in(ordered_pair(C,D),A)
& in(ordered_pair(D,C),A) )
=> C = D ) ) ) ).
fof(d4_subset_1,axiom,
! [A] : cast_to_subset(A) = A ).
fof(d4_tarski,axiom,
! [A,B] :
( B = union(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] :
( in(C,D)
& in(D,A) ) ) ) ).
fof(d4_wellord1,axiom,
! [A] :
( relation(A)
=> ( well_ordering(A)
<=> ( reflexive(A)
& transitive(A)
& antisymmetric(A)
& connected(A)
& well_founded_relation(A) ) ) ) ).
fof(d4_xboole_0,axiom,
! [A,B,C] :
( C = set_difference(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& ~ in(D,B) ) ) ) ).
fof(d5_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ! [B] :
( B = relation_rng(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] :
( in(D,relation_dom(A))
& C = apply(A,D) ) ) ) ) ).
fof(d5_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( B = relation_rng(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] : in(ordered_pair(D,C),A) ) ) ) ).
fof(d5_subset_1,axiom,
! [A,B] :
( element(B,powerset(A))
=> subset_complement(A,B) = set_difference(A,B) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(d5_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( well_orders(A,B)
<=> ( is_reflexive_in(A,B)
& is_transitive_in(A,B)
& is_antisymmetric_in(A,B)
& is_connected_in(A,B)
& is_well_founded_in(A,B) ) ) ) ).
fof(d6_ordinal1,axiom,
! [A] :
( being_limit_ordinal(A)
<=> A = union(A) ) ).
fof(d6_relat_1,axiom,
! [A] :
( relation(A)
=> relation_field(A) = set_union2(relation_dom(A),relation_rng(A)) ) ).
fof(d6_relat_2,axiom,
! [A] :
( relation(A)
=> ! [B] :
( is_connected_in(A,B)
<=> ! [C,D] :
~ ( in(C,B)
& in(D,B)
& C != D
& ~ in(ordered_pair(C,D),A)
& ~ in(ordered_pair(D,C),A) ) ) ) ).
fof(d6_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] : relation_restriction(A,B) = set_intersection2(A,cartesian_product2(B,B)) ) ).
fof(d7_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ( B = relation_inverse(A)
<=> ! [C,D] :
( in(ordered_pair(C,D),B)
<=> in(ordered_pair(D,C),A) ) ) ) ) ).
fof(d7_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ! [C] :
( ( relation(C)
& function(C) )
=> ( relation_isomorphism(A,B,C)
<=> ( relation_dom(C) = relation_field(A)
& relation_rng(C) = relation_field(B)
& one_to_one(C)
& ! [D,E] :
( in(ordered_pair(D,E),A)
<=> ( in(D,relation_field(A))
& in(E,relation_field(A))
& in(ordered_pair(apply(C,D),apply(C,E)),B) ) ) ) ) ) ) ) ).
fof(d7_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
<=> set_intersection2(A,B) = empty_set ) ).
fof(d8_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ( one_to_one(A)
<=> ! [B,C] :
( ( in(B,relation_dom(A))
& in(C,relation_dom(A))
& apply(A,B) = apply(A,C) )
=> B = C ) ) ) ).
fof(d8_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ! [C] :
( relation(C)
=> ( C = relation_composition(A,B)
<=> ! [D,E] :
( in(ordered_pair(D,E),C)
<=> ? [F] :
( in(ordered_pair(D,F),A)
& in(ordered_pair(F,E),B) ) ) ) ) ) ) ).
fof(d8_relat_2,axiom,
! [A] :
( relation(A)
=> ! [B] :
( is_transitive_in(A,B)
<=> ! [C,D,E] :
( ( in(C,B)
& in(D,B)
& in(E,B)
& in(ordered_pair(C,D),A)
& in(ordered_pair(D,E),A) )
=> in(ordered_pair(C,E),A) ) ) ) ).
fof(d8_setfam_1,axiom,
! [A,B] :
( element(B,powerset(powerset(A)))
=> ! [C] :
( element(C,powerset(powerset(A)))
=> ( C = complements_of_subsets(A,B)
<=> ! [D] :
( element(D,powerset(A))
=> ( in(D,C)
<=> in(subset_complement(A,D),B) ) ) ) ) ) ).
fof(d8_xboole_0,axiom,
! [A,B] :
( proper_subset(A,B)
<=> ( subset(A,B)
& A != B ) ) ).
fof(d9_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ( one_to_one(A)
=> function_inverse(A) = relation_inverse(A) ) ) ).
fof(d9_relat_2,axiom,
! [A] :
( relation(A)
=> ( reflexive(A)
<=> is_reflexive_in(A,relation_field(A)) ) ) ).
fof(dt_k10_relat_1,axiom,
$true ).
fof(dt_k1_enumset1,axiom,
$true ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k1_ordinal1,axiom,
$true ).
fof(dt_k1_relat_1,axiom,
$true ).
fof(dt_k1_setfam_1,axiom,
$true ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_wellord1,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ( relation(function_inverse(A))
& function(function_inverse(A)) ) ) ).
fof(dt_k2_relat_1,axiom,
$true ).
fof(dt_k2_subset_1,axiom,
! [A] : element(cast_to_subset(A),powerset(A)) ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k2_wellord1,axiom,
! [A,B] :
( relation(A)
=> relation(relation_restriction(A,B)) ) ).
fof(dt_k2_xboole_0,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_relat_1,axiom,
$true ).
fof(dt_k3_subset_1,axiom,
! [A,B] :
( element(B,powerset(A))
=> element(subset_complement(A,B),powerset(A)) ) ).
fof(dt_k3_tarski,axiom,
$true ).
fof(dt_k3_xboole_0,axiom,
$true ).
fof(dt_k4_relat_1,axiom,
! [A] :
( relation(A)
=> relation(relation_inverse(A)) ) ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_k4_xboole_0,axiom,
$true ).
fof(dt_k5_relat_1,axiom,
! [A,B] :
( ( relation(A)
& relation(B) )
=> relation(relation_composition(A,B)) ) ).
fof(dt_k5_setfam_1,axiom,
! [A,B] :
( element(B,powerset(powerset(A)))
=> element(union_of_subsets(A,B),powerset(A)) ) ).
fof(dt_k6_relat_1,axiom,
! [A] : relation(identity_relation(A)) ).
fof(dt_k6_setfam_1,axiom,
! [A,B] :
( element(B,powerset(powerset(A)))
=> element(meet_of_subsets(A,B),powerset(A)) ) ).
fof(dt_k6_subset_1,axiom,
! [A,B,C] :
( ( element(B,powerset(A))
& element(C,powerset(A)) )
=> element(subset_difference(A,B,C),powerset(A)) ) ).
fof(dt_k7_relat_1,axiom,
! [A,B] :
( relation(A)
=> relation(relation_dom_restriction(A,B)) ) ).
fof(dt_k7_setfam_1,axiom,
! [A,B] :
( element(B,powerset(powerset(A)))
=> element(complements_of_subsets(A,B),powerset(powerset(A))) ) ).
fof(dt_k8_relat_1,axiom,
! [A,B] :
( relation(B)
=> relation(relation_rng_restriction(A,B)) ) ).
fof(dt_k9_relat_1,axiom,
$true ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
=> element(C,powerset(cartesian_product2(A,B))) ) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : relation_of2(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : relation_of2_as_subset(C,A,B) ).
fof(fc10_relat_1,axiom,
! [A,B] :
( ( empty(A)
& relation(B) )
=> ( empty(relation_composition(B,A))
& relation(relation_composition(B,A)) ) ) ).
fof(fc11_relat_1,axiom,
! [A] :
( empty(A)
=> ( empty(relation_inverse(A))
& relation(relation_inverse(A)) ) ) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc13_relat_1,axiom,
! [A,B] :
( ( relation(A)
& relation_empty_yielding(A) )
=> ( relation(relation_dom_restriction(A,B))
& relation_empty_yielding(relation_dom_restriction(A,B)) ) ) ).
fof(fc1_funct_1,axiom,
! [A,B] :
( ( relation(A)
& function(A)
& relation(B)
& function(B) )
=> ( relation(relation_composition(A,B))
& function(relation_composition(A,B)) ) ) ).
fof(fc1_ordinal1,axiom,
! [A] : ~ empty(succ(A)) ).
fof(fc1_relat_1,axiom,
! [A,B] :
( ( relation(A)
& relation(B) )
=> relation(set_intersection2(A,B)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(fc2_funct_1,axiom,
! [A] :
( relation(identity_relation(A))
& function(identity_relation(A)) ) ).
fof(fc2_ordinal1,axiom,
( relation(empty_set)
& relation_empty_yielding(empty_set)
& function(empty_set)
& one_to_one(empty_set)
& empty(empty_set)
& epsilon_transitive(empty_set)
& epsilon_connected(empty_set)
& ordinal(empty_set) ) ).
fof(fc2_relat_1,axiom,
! [A,B] :
( ( relation(A)
& relation(B) )
=> relation(set_union2(A,B)) ) ).
fof(fc2_subset_1,axiom,
! [A] : ~ empty(singleton(A)) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A)
& one_to_one(A) )
=> ( relation(relation_inverse(A))
& function(relation_inverse(A)) ) ) ).
fof(fc3_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( ~ empty(succ(A))
& epsilon_transitive(succ(A))
& epsilon_connected(succ(A))
& ordinal(succ(A)) ) ) ).
fof(fc3_relat_1,axiom,
! [A,B] :
( ( relation(A)
& relation(B) )
=> relation(set_difference(A,B)) ) ).
fof(fc3_subset_1,axiom,
! [A,B] : ~ empty(unordered_pair(A,B)) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(fc4_funct_1,axiom,
! [A,B] :
( ( relation(A)
& function(A) )
=> ( relation(relation_dom_restriction(A,B))
& function(relation_dom_restriction(A,B)) ) ) ).
fof(fc4_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(union(A))
& epsilon_connected(union(A))
& ordinal(union(A)) ) ) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ empty(A)
& ~ empty(B) )
=> ~ empty(cartesian_product2(A,B)) ) ).
fof(fc5_funct_1,axiom,
! [A,B] :
( ( relation(B)
& function(B) )
=> ( relation(relation_rng_restriction(A,B))
& function(relation_rng_restriction(A,B)) ) ) ).
fof(fc5_relat_1,axiom,
! [A] :
( ( ~ empty(A)
& relation(A) )
=> ~ empty(relation_dom(A)) ) ).
fof(fc6_relat_1,axiom,
! [A] :
( ( ~ empty(A)
& relation(A) )
=> ~ empty(relation_rng(A)) ) ).
fof(fc7_relat_1,axiom,
! [A] :
( empty(A)
=> ( empty(relation_dom(A))
& relation(relation_dom(A)) ) ) ).
fof(fc8_relat_1,axiom,
! [A] :
( empty(A)
=> ( empty(relation_rng(A))
& relation(relation_rng(A)) ) ) ).
fof(fc9_relat_1,axiom,
! [A,B] :
( ( empty(A)
& relation(B) )
=> ( empty(relation_composition(A,B))
& relation(relation_composition(A,B)) ) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(involutiveness_k3_subset_1,axiom,
! [A,B] :
( element(B,powerset(A))
=> subset_complement(A,subset_complement(A,B)) = B ) ).
fof(involutiveness_k4_relat_1,axiom,
! [A] :
( relation(A)
=> relation_inverse(relation_inverse(A)) = A ) ).
fof(involutiveness_k7_setfam_1,axiom,
! [A,B] :
( element(B,powerset(powerset(A)))
=> complements_of_subsets(A,complements_of_subsets(A,B)) = B ) ).
fof(irreflexivity_r2_xboole_0,axiom,
! [A,B] : ~ proper_subset(A,A) ).
fof(l1_wellord1,lemma,
! [A] :
( relation(A)
=> ( reflexive(A)
<=> ! [B] :
( in(B,relation_field(A))
=> in(ordered_pair(B,B),A) ) ) ) ).
fof(l1_zfmisc_1,lemma,
! [A] : singleton(A) != empty_set ).
fof(l23_zfmisc_1,lemma,
! [A,B] :
( in(A,B)
=> set_union2(singleton(A),B) = B ) ).
fof(l25_zfmisc_1,lemma,
! [A,B] :
~ ( disjoint(singleton(A),B)
& in(A,B) ) ).
fof(l28_zfmisc_1,lemma,
! [A,B] :
( ~ in(A,B)
=> disjoint(singleton(A),B) ) ).
fof(l29_wellord1,lemma,
! [A,B] :
( relation(B)
=> subset(relation_dom(relation_rng_restriction(A,B)),relation_dom(B)) ) ).
fof(l2_wellord1,lemma,
! [A] :
( relation(A)
=> ( transitive(A)
<=> ! [B,C,D] :
( ( in(ordered_pair(B,C),A)
& in(ordered_pair(C,D),A) )
=> in(ordered_pair(B,D),A) ) ) ) ).
fof(l2_zfmisc_1,lemma,
! [A,B] :
( subset(singleton(A),B)
<=> in(A,B) ) ).
fof(l32_xboole_1,lemma,
! [A,B] :
( set_difference(A,B) = empty_set
<=> subset(A,B) ) ).
fof(l3_subset_1,lemma,
! [A,B] :
( element(B,powerset(A))
=> ! [C] :
( in(C,B)
=> in(C,A) ) ) ).
fof(l3_wellord1,lemma,
! [A] :
( relation(A)
=> ( antisymmetric(A)
<=> ! [B,C] :
( ( in(ordered_pair(B,C),A)
& in(ordered_pair(C,B),A) )
=> B = C ) ) ) ).
fof(l3_zfmisc_1,lemma,
! [A,B,C] :
( subset(A,B)
=> ( in(C,A)
| subset(A,set_difference(B,singleton(C))) ) ) ).
fof(l4_wellord1,lemma,
! [A] :
( relation(A)
=> ( connected(A)
<=> ! [B,C] :
~ ( in(B,relation_field(A))
& in(C,relation_field(A))
& B != C
& ~ in(ordered_pair(B,C),A)
& ~ in(ordered_pair(C,B),A) ) ) ) ).
fof(l4_zfmisc_1,lemma,
! [A,B] :
( subset(A,singleton(B))
<=> ( A = empty_set
| A = singleton(B) ) ) ).
fof(l50_zfmisc_1,lemma,
! [A,B] :
( in(A,B)
=> subset(A,union(B)) ) ).
fof(l55_zfmisc_1,lemma,
! [A,B,C,D] :
( in(ordered_pair(A,B),cartesian_product2(C,D))
<=> ( in(A,C)
& in(B,D) ) ) ).
fof(l71_subset_1,lemma,
! [A,B] :
( ! [C] :
( in(C,A)
=> in(C,B) )
=> element(A,powerset(B)) ) ).
fof(l82_funct_1,lemma,
! [A,B,C] :
( ( relation(C)
& function(C) )
=> ( in(B,relation_dom(relation_dom_restriction(C,A)))
<=> ( in(B,relation_dom(C))
& in(B,A) ) ) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A)
& function(A) ) ).
fof(redefinition_k5_setfam_1,axiom,
! [A,B] :
( element(B,powerset(powerset(A)))
=> union_of_subsets(A,B) = union(B) ) ).
fof(redefinition_k6_setfam_1,axiom,
! [A,B] :
( element(B,powerset(powerset(A)))
=> meet_of_subsets(A,B) = set_meet(B) ) ).
fof(redefinition_k6_subset_1,axiom,
! [A,B,C] :
( ( element(B,powerset(A))
& element(C,powerset(A)) )
=> subset_difference(A,B,C) = set_difference(B,C) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
<=> relation_of2(C,A,B) ) ).
fof(redefinition_r1_ordinal1,axiom,
! [A,B] :
( ( ordinal(A)
& ordinal(B) )
=> ( ordinal_subset(A,B)
<=> subset(A,B) ) ) ).
fof(reflexivity_r1_ordinal1,axiom,
! [A,B] :
( ( ordinal(A)
& ordinal(B) )
=> ordinal_subset(A,A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(symmetry_r1_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
=> disjoint(B,A) ) ).
fof(t106_zfmisc_1,lemma,
! [A,B,C,D] :
( in(ordered_pair(A,B),cartesian_product2(C,D))
<=> ( in(A,C)
& in(B,D) ) ) ).
fof(t10_ordinal1,lemma,
! [A] : in(A,succ(A)) ).
fof(t10_zfmisc_1,lemma,
! [A,B,C,D] :
~ ( unordered_pair(A,B) = unordered_pair(C,D)
& A != C
& A != D ) ).
fof(t115_relat_1,lemma,
! [A,B,C] :
( relation(C)
=> ( in(A,relation_rng(relation_rng_restriction(B,C)))
<=> ( in(A,B)
& in(A,relation_rng(C)) ) ) ) ).
fof(t116_relat_1,lemma,
! [A,B] :
( relation(B)
=> subset(relation_rng(relation_rng_restriction(A,B)),A) ) ).
fof(t117_relat_1,lemma,
! [A,B] :
( relation(B)
=> subset(relation_rng_restriction(A,B),B) ) ).
fof(t118_relat_1,lemma,
! [A,B] :
( relation(B)
=> subset(relation_rng(relation_rng_restriction(A,B)),relation_rng(B)) ) ).
fof(t118_zfmisc_1,lemma,
! [A,B,C] :
( subset(A,B)
=> ( subset(cartesian_product2(A,C),cartesian_product2(B,C))
& subset(cartesian_product2(C,A),cartesian_product2(C,B)) ) ) ).
fof(t119_relat_1,lemma,
! [A,B] :
( relation(B)
=> relation_rng(relation_rng_restriction(A,B)) = set_intersection2(relation_rng(B),A) ) ).
fof(t119_zfmisc_1,lemma,
! [A,B,C,D] :
( ( subset(A,B)
& subset(C,D) )
=> subset(cartesian_product2(A,C),cartesian_product2(B,D)) ) ).
fof(t12_relset_1,lemma,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
=> ( subset(relation_dom(C),A)
& subset(relation_rng(C),B) ) ) ).
fof(t12_xboole_1,lemma,
! [A,B] :
( subset(A,B)
=> set_union2(A,B) = B ) ).
fof(t136_zfmisc_1,lemma,
! [A] :
? [B] :
( in(A,B)
& ! [C,D] :
( ( in(C,B)
& subset(D,C) )
=> in(D,B) )
& ! [C] :
( in(C,B)
=> in(powerset(C),B) )
& ! [C] :
~ ( subset(C,B)
& ~ are_equipotent(C,B)
& ~ in(C,B) ) ) ).
fof(t140_relat_1,lemma,
! [A,B,C] :
( relation(C)
=> relation_dom_restriction(relation_rng_restriction(A,C),B) = relation_rng_restriction(A,relation_dom_restriction(C,B)) ) ).
fof(t143_relat_1,lemma,
! [A,B,C] :
( relation(C)
=> ( in(A,relation_image(C,B))
<=> ? [D] :
( in(D,relation_dom(C))
& in(ordered_pair(D,A),C)
& in(D,B) ) ) ) ).
fof(t144_relat_1,lemma,
! [A,B] :
( relation(B)
=> subset(relation_image(B,A),relation_rng(B)) ) ).
fof(t145_funct_1,lemma,
! [A,B] :
( ( relation(B)
& function(B) )
=> subset(relation_image(B,relation_inverse_image(B,A)),A) ) ).
fof(t145_relat_1,lemma,
! [A,B] :
( relation(B)
=> relation_image(B,A) = relation_image(B,set_intersection2(relation_dom(B),A)) ) ).
fof(t146_funct_1,lemma,
! [A,B] :
( relation(B)
=> ( subset(A,relation_dom(B))
=> subset(A,relation_inverse_image(B,relation_image(B,A))) ) ) ).
fof(t146_relat_1,lemma,
! [A] :
( relation(A)
=> relation_image(A,relation_dom(A)) = relation_rng(A) ) ).
fof(t147_funct_1,lemma,
! [A,B] :
( ( relation(B)
& function(B) )
=> ( subset(A,relation_rng(B))
=> relation_image(B,relation_inverse_image(B,A)) = A ) ) ).
fof(t14_relset_1,lemma,
! [A,B,C,D] :
( relation_of2_as_subset(D,C,A)
=> ( subset(relation_rng(D),B)
=> relation_of2_as_subset(D,C,B) ) ) ).
fof(t160_relat_1,lemma,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> relation_rng(relation_composition(A,B)) = relation_image(B,relation_rng(A)) ) ) ).
fof(t166_relat_1,lemma,
! [A,B,C] :
( relation(C)
=> ( in(A,relation_inverse_image(C,B))
<=> ? [D] :
( in(D,relation_rng(C))
& in(ordered_pair(A,D),C)
& in(D,B) ) ) ) ).
fof(t167_relat_1,lemma,
! [A,B] :
( relation(B)
=> subset(relation_inverse_image(B,A),relation_dom(B)) ) ).
fof(t16_relset_1,conjecture,
! [A,B,C,D] :
( relation_of2_as_subset(D,C,A)
=> ( subset(A,B)
=> relation_of2_as_subset(D,C,B) ) ) ).
fof(t16_wellord1,lemma,
! [A,B,C] :
( relation(C)
=> ( in(A,relation_restriction(C,B))
<=> ( in(A,C)
& in(A,cartesian_product2(B,B)) ) ) ) ).
fof(t174_relat_1,lemma,
! [A,B] :
( relation(B)
=> ~ ( A != empty_set
& subset(A,relation_rng(B))
& relation_inverse_image(B,A) = empty_set ) ) ).
fof(t178_relat_1,lemma,
! [A,B,C] :
( relation(C)
=> ( subset(A,B)
=> subset(relation_inverse_image(C,A),relation_inverse_image(C,B)) ) ) ).
fof(t17_wellord1,lemma,
! [A,B] :
( relation(B)
=> relation_restriction(B,A) = relation_dom_restriction(relation_rng_restriction(A,B),A) ) ).
fof(t17_xboole_1,lemma,
! [A,B] : subset(set_intersection2(A,B),A) ).
fof(t18_wellord1,lemma,
! [A,B] :
( relation(B)
=> relation_restriction(B,A) = relation_rng_restriction(A,relation_dom_restriction(B,A)) ) ).
fof(t19_wellord1,lemma,
! [A,B,C] :
( relation(C)
=> ( in(A,relation_field(relation_restriction(C,B)))
=> ( in(A,relation_field(C))
& in(A,B) ) ) ) ).
fof(t19_xboole_1,lemma,
! [A,B,C] :
( ( subset(A,B)
& subset(A,C) )
=> subset(A,set_intersection2(B,C)) ) ).
fof(t1_boole,axiom,
! [A] : set_union2(A,empty_set) = A ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t1_xboole_1,lemma,
! [A,B,C] :
( ( subset(A,B)
& subset(B,C) )
=> subset(A,C) ) ).
fof(t1_zfmisc_1,lemma,
powerset(empty_set) = singleton(empty_set) ).
fof(t20_relat_1,lemma,
! [A,B,C] :
( relation(C)
=> ( in(ordered_pair(A,B),C)
=> ( in(A,relation_dom(C))
& in(B,relation_rng(C)) ) ) ) ).
fof(t20_wellord1,lemma,
! [A,B] :
( relation(B)
=> ( subset(relation_field(relation_restriction(B,A)),relation_field(B))
& subset(relation_field(relation_restriction(B,A)),A) ) ) ).
fof(t21_funct_1,lemma,
! [A,B] :
( ( relation(B)
& function(B) )
=> ! [C] :
( ( relation(C)
& function(C) )
=> ( in(A,relation_dom(relation_composition(C,B)))
<=> ( in(A,relation_dom(C))
& in(apply(C,A),relation_dom(B)) ) ) ) ) ).
fof(t21_ordinal1,lemma,
! [A] :
( epsilon_transitive(A)
=> ! [B] :
( ordinal(B)
=> ( proper_subset(A,B)
=> in(A,B) ) ) ) ).
fof(t21_relat_1,lemma,
! [A] :
( relation(A)
=> subset(A,cartesian_product2(relation_dom(A),relation_rng(A))) ) ).
fof(t21_wellord1,lemma,
! [A,B,C] :
( relation(C)
=> subset(fiber(relation_restriction(C,A),B),fiber(C,B)) ) ).
fof(t22_funct_1,lemma,
! [A,B] :
( ( relation(B)
& function(B) )
=> ! [C] :
( ( relation(C)
& function(C) )
=> ( in(A,relation_dom(relation_composition(C,B)))
=> apply(relation_composition(C,B),A) = apply(B,apply(C,A)) ) ) ) ).
fof(t22_wellord1,lemma,
! [A,B] :
( relation(B)
=> ( reflexive(B)
=> reflexive(relation_restriction(B,A)) ) ) ).
fof(t23_funct_1,lemma,
! [A,B] :
( ( relation(B)
& function(B) )
=> ! [C] :
( ( relation(C)
& function(C) )
=> ( in(A,relation_dom(B))
=> apply(relation_composition(B,C),A) = apply(C,apply(B,A)) ) ) ) ).
fof(t23_ordinal1,lemma,
! [A,B] :
( ordinal(B)
=> ( in(A,B)
=> ordinal(A) ) ) ).
fof(t23_wellord1,lemma,
! [A,B] :
( relation(B)
=> ( connected(B)
=> connected(relation_restriction(B,A)) ) ) ).
fof(t24_ordinal1,lemma,
! [A] :
( ordinal(A)
=> ! [B] :
( ordinal(B)
=> ~ ( ~ in(A,B)
& A != B
& ~ in(B,A) ) ) ) ).
fof(t24_wellord1,lemma,
! [A,B] :
( relation(B)
=> ( transitive(B)
=> transitive(relation_restriction(B,A)) ) ) ).
fof(t25_relat_1,lemma,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ( subset(A,B)
=> ( subset(relation_dom(A),relation_dom(B))
& subset(relation_rng(A),relation_rng(B)) ) ) ) ) ).
fof(t25_wellord1,lemma,
! [A,B] :
( relation(B)
=> ( antisymmetric(B)
=> antisymmetric(relation_restriction(B,A)) ) ) ).
fof(t26_xboole_1,lemma,
! [A,B,C] :
( subset(A,B)
=> subset(set_intersection2(A,C),set_intersection2(B,C)) ) ).
fof(t28_xboole_1,lemma,
! [A,B] :
( subset(A,B)
=> set_intersection2(A,B) = A ) ).
fof(t2_boole,axiom,
! [A] : set_intersection2(A,empty_set) = empty_set ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( in(C,A)
<=> in(C,B) )
=> A = B ) ).
fof(t2_xboole_1,lemma,
! [A] : subset(empty_set,A) ).
fof(t30_relat_1,lemma,
! [A,B,C] :
( relation(C)
=> ( in(ordered_pair(A,B),C)
=> ( in(A,relation_field(C))
& in(B,relation_field(C)) ) ) ) ).
fof(t31_ordinal1,lemma,
! [A] :
( ! [B] :
( in(B,A)
=> ( ordinal(B)
& subset(B,A) ) )
=> ordinal(A) ) ).
fof(t31_wellord1,lemma,
! [A,B] :
( relation(B)
=> ( well_founded_relation(B)
=> well_founded_relation(relation_restriction(B,A)) ) ) ).
fof(t32_ordinal1,lemma,
! [A,B] :
( ordinal(B)
=> ~ ( subset(A,B)
& A != empty_set
& ! [C] :
( ordinal(C)
=> ~ ( in(C,A)
& ! [D] :
( ordinal(D)
=> ( in(D,A)
=> ordinal_subset(C,D) ) ) ) ) ) ) ).
fof(t32_wellord1,lemma,
! [A,B] :
( relation(B)
=> ( well_ordering(B)
=> well_ordering(relation_restriction(B,A)) ) ) ).
fof(t33_ordinal1,lemma,
! [A] :
( ordinal(A)
=> ! [B] :
( ordinal(B)
=> ( in(A,B)
<=> ordinal_subset(succ(A),B) ) ) ) ).
fof(t33_xboole_1,lemma,
! [A,B,C] :
( subset(A,B)
=> subset(set_difference(A,C),set_difference(B,C)) ) ).
fof(t33_zfmisc_1,lemma,
! [A,B,C,D] :
( ordered_pair(A,B) = ordered_pair(C,D)
=> ( A = C
& B = D ) ) ).
fof(t34_funct_1,lemma,
! [A,B] :
( ( relation(B)
& function(B) )
=> ( B = identity_relation(A)
<=> ( relation_dom(B) = A
& ! [C] :
( in(C,A)
=> apply(B,C) = C ) ) ) ) ).
fof(t35_funct_1,lemma,
! [A,B] :
( in(B,A)
=> apply(identity_relation(A),B) = B ) ).
fof(t36_xboole_1,lemma,
! [A,B] : subset(set_difference(A,B),A) ).
fof(t37_relat_1,lemma,
! [A] :
( relation(A)
=> ( relation_rng(A) = relation_dom(relation_inverse(A))
& relation_dom(A) = relation_rng(relation_inverse(A)) ) ) ).
fof(t37_xboole_1,lemma,
! [A,B] :
( set_difference(A,B) = empty_set
<=> subset(A,B) ) ).
fof(t37_zfmisc_1,lemma,
! [A,B] :
( subset(singleton(A),B)
<=> in(A,B) ) ).
fof(t38_zfmisc_1,lemma,
! [A,B,C] :
( subset(unordered_pair(A,B),C)
<=> ( in(A,C)
& in(B,C) ) ) ).
fof(t39_wellord1,lemma,
! [A,B] :
( relation(B)
=> ( ( well_ordering(B)
& subset(A,relation_field(B)) )
=> relation_field(relation_restriction(B,A)) = A ) ) ).
fof(t39_xboole_1,lemma,
! [A,B] : set_union2(A,set_difference(B,A)) = set_union2(A,B) ).
fof(t39_zfmisc_1,lemma,
! [A,B] :
( subset(A,singleton(B))
<=> ( A = empty_set
| A = singleton(B) ) ) ).
fof(t3_boole,axiom,
! [A] : set_difference(A,empty_set) = A ).
fof(t3_ordinal1,lemma,
! [A,B,C] :
~ ( in(A,B)
& in(B,C)
& in(C,A) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t3_xboole_0,lemma,
! [A,B] :
( ~ ( ~ disjoint(A,B)
& ! [C] :
~ ( in(C,A)
& in(C,B) ) )
& ~ ( ? [C] :
( in(C,A)
& in(C,B) )
& disjoint(A,B) ) ) ).
fof(t3_xboole_1,lemma,
! [A] :
( subset(A,empty_set)
=> A = empty_set ) ).
fof(t40_xboole_1,lemma,
! [A,B] : set_difference(set_union2(A,B),B) = set_difference(A,B) ).
fof(t41_ordinal1,lemma,
! [A] :
( ordinal(A)
=> ( being_limit_ordinal(A)
<=> ! [B] :
( ordinal(B)
=> ( in(B,A)
=> in(succ(B),A) ) ) ) ) ).
fof(t42_ordinal1,lemma,
! [A] :
( ordinal(A)
=> ( ~ ( ~ being_limit_ordinal(A)
& ! [B] :
( ordinal(B)
=> A != succ(B) ) )
& ~ ( ? [B] :
( ordinal(B)
& A = succ(B) )
& being_limit_ordinal(A) ) ) ) ).
fof(t43_subset_1,lemma,
! [A,B] :
( element(B,powerset(A))
=> ! [C] :
( element(C,powerset(A))
=> ( disjoint(B,C)
<=> subset(B,subset_complement(A,C)) ) ) ) ).
fof(t44_relat_1,lemma,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> subset(relation_dom(relation_composition(A,B)),relation_dom(A)) ) ) ).
fof(t45_relat_1,lemma,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> subset(relation_rng(relation_composition(A,B)),relation_rng(B)) ) ) ).
fof(t45_xboole_1,lemma,
! [A,B] :
( subset(A,B)
=> B = set_union2(A,set_difference(B,A)) ) ).
fof(t46_relat_1,lemma,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ( subset(relation_rng(A),relation_dom(B))
=> relation_dom(relation_composition(A,B)) = relation_dom(A) ) ) ) ).
fof(t46_setfam_1,lemma,
! [A,B] :
( element(B,powerset(powerset(A)))
=> ~ ( B != empty_set
& complements_of_subsets(A,B) = empty_set ) ) ).
fof(t46_zfmisc_1,lemma,
! [A,B] :
( in(A,B)
=> set_union2(singleton(A),B) = B ) ).
fof(t47_relat_1,lemma,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ( subset(relation_dom(A),relation_rng(B))
=> relation_rng(relation_composition(B,A)) = relation_rng(A) ) ) ) ).
fof(t47_setfam_1,lemma,
! [A,B] :
( element(B,powerset(powerset(A)))
=> ( B != empty_set
=> subset_difference(A,cast_to_subset(A),union_of_subsets(A,B)) = meet_of_subsets(A,complements_of_subsets(A,B)) ) ) ).
fof(t48_setfam_1,lemma,
! [A,B] :
( element(B,powerset(powerset(A)))
=> ( B != empty_set
=> union_of_subsets(A,complements_of_subsets(A,B)) = subset_difference(A,cast_to_subset(A),meet_of_subsets(A,B)) ) ) ).
fof(t48_xboole_1,lemma,
! [A,B] : set_difference(A,set_difference(A,B)) = set_intersection2(A,B) ).
fof(t49_wellord1,lemma,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ! [C] :
( ( relation(C)
& function(C) )
=> ( relation_isomorphism(A,B,C)
=> relation_isomorphism(B,A,function_inverse(C)) ) ) ) ) ).
fof(t4_boole,axiom,
! [A] : set_difference(empty_set,A) = empty_set ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t4_xboole_0,lemma,
! [A,B] :
( ~ ( ~ disjoint(A,B)
& ! [C] : ~ in(C,set_intersection2(A,B)) )
& ~ ( ? [C] : in(C,set_intersection2(A,B))
& disjoint(A,B) ) ) ).
fof(t50_subset_1,lemma,
! [A] :
( A != empty_set
=> ! [B] :
( element(B,powerset(A))
=> ! [C] :
( element(C,A)
=> ( ~ in(C,B)
=> in(C,subset_complement(A,B)) ) ) ) ) ).
fof(t53_wellord1,lemma,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ! [C] :
( ( relation(C)
& function(C) )
=> ( relation_isomorphism(A,B,C)
=> ( ( reflexive(A)
=> reflexive(B) )
& ( transitive(A)
=> transitive(B) )
& ( connected(A)
=> connected(B) )
& ( antisymmetric(A)
=> antisymmetric(B) )
& ( well_founded_relation(A)
=> well_founded_relation(B) ) ) ) ) ) ) ).
fof(t54_funct_1,lemma,
! [A] :
( ( relation(A)
& function(A) )
=> ( one_to_one(A)
=> ! [B] :
( ( relation(B)
& function(B) )
=> ( B = function_inverse(A)
<=> ( relation_dom(B) = relation_rng(A)
& ! [C,D] :
( ( ( in(C,relation_rng(A))
& D = apply(B,C) )
=> ( in(D,relation_dom(A))
& C = apply(A,D) ) )
& ( ( in(D,relation_dom(A))
& C = apply(A,D) )
=> ( in(C,relation_rng(A))
& D = apply(B,C) ) ) ) ) ) ) ) ) ).
fof(t54_subset_1,lemma,
! [A,B,C] :
( element(C,powerset(A))
=> ~ ( in(B,subset_complement(A,C))
& in(B,C) ) ) ).
fof(t54_wellord1,lemma,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ! [C] :
( ( relation(C)
& function(C) )
=> ( ( well_ordering(A)
& relation_isomorphism(A,B,C) )
=> well_ordering(B) ) ) ) ) ).
fof(t55_funct_1,lemma,
! [A] :
( ( relation(A)
& function(A) )
=> ( one_to_one(A)
=> ( relation_rng(A) = relation_dom(function_inverse(A))
& relation_dom(A) = relation_rng(function_inverse(A)) ) ) ) ).
fof(t56_relat_1,lemma,
! [A] :
( relation(A)
=> ( ! [B,C] : ~ in(ordered_pair(B,C),A)
=> A = empty_set ) ) ).
fof(t57_funct_1,lemma,
! [A,B] :
( ( relation(B)
& function(B) )
=> ( ( one_to_one(B)
& in(A,relation_rng(B)) )
=> ( A = apply(B,apply(function_inverse(B),A))
& A = apply(relation_composition(function_inverse(B),B),A) ) ) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t5_wellord1,lemma,
! [A] :
( relation(A)
=> ( well_founded_relation(A)
<=> is_well_founded_in(A,relation_field(A)) ) ) ).
fof(t60_relat_1,lemma,
( relation_dom(empty_set) = empty_set
& relation_rng(empty_set) = empty_set ) ).
fof(t60_xboole_1,lemma,
! [A,B] :
~ ( subset(A,B)
& proper_subset(B,A) ) ).
fof(t62_funct_1,lemma,
! [A] :
( ( relation(A)
& function(A) )
=> ( one_to_one(A)
=> one_to_one(function_inverse(A)) ) ) ).
fof(t63_xboole_1,lemma,
! [A,B,C] :
( ( subset(A,B)
& disjoint(B,C) )
=> disjoint(A,C) ) ).
fof(t64_relat_1,lemma,
! [A] :
( relation(A)
=> ( ( relation_dom(A) = empty_set
| relation_rng(A) = empty_set )
=> A = empty_set ) ) ).
fof(t65_relat_1,lemma,
! [A] :
( relation(A)
=> ( relation_dom(A) = empty_set
<=> relation_rng(A) = empty_set ) ) ).
fof(t65_zfmisc_1,lemma,
! [A,B] :
( set_difference(A,singleton(B)) = A
<=> ~ in(B,A) ) ).
fof(t68_funct_1,lemma,
! [A,B] :
( ( relation(B)
& function(B) )
=> ! [C] :
( ( relation(C)
& function(C) )
=> ( B = relation_dom_restriction(C,A)
<=> ( relation_dom(B) = set_intersection2(relation_dom(C),A)
& ! [D] :
( in(D,relation_dom(B))
=> apply(B,D) = apply(C,D) ) ) ) ) ) ).
fof(t69_enumset1,lemma,
! [A] : unordered_pair(A,A) = singleton(A) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t6_zfmisc_1,lemma,
! [A,B] :
( subset(singleton(A),singleton(B))
=> A = B ) ).
fof(t70_funct_1,lemma,
! [A,B,C] :
( ( relation(C)
& function(C) )
=> ( in(B,relation_dom(relation_dom_restriction(C,A)))
=> apply(relation_dom_restriction(C,A),B) = apply(C,B) ) ) ).
fof(t71_relat_1,lemma,
! [A] :
( relation_dom(identity_relation(A)) = A
& relation_rng(identity_relation(A)) = A ) ).
fof(t72_funct_1,lemma,
! [A,B,C] :
( ( relation(C)
& function(C) )
=> ( in(B,A)
=> apply(relation_dom_restriction(C,A),B) = apply(C,B) ) ) ).
fof(t74_relat_1,lemma,
! [A,B,C,D] :
( relation(D)
=> ( in(ordered_pair(A,B),relation_composition(identity_relation(C),D))
<=> ( in(A,C)
& in(ordered_pair(A,B),D) ) ) ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t7_tarski,axiom,
! [A,B] :
~ ( in(A,B)
& ! [C] :
~ ( in(C,B)
& ! [D] :
~ ( in(D,B)
& in(D,C) ) ) ) ).
fof(t7_xboole_1,lemma,
! [A,B] : subset(A,set_union2(A,B)) ).
fof(t83_xboole_1,lemma,
! [A,B] :
( disjoint(A,B)
<=> set_difference(A,B) = A ) ).
fof(t86_relat_1,lemma,
! [A,B,C] :
( relation(C)
=> ( in(A,relation_dom(relation_dom_restriction(C,B)))
<=> ( in(A,B)
& in(A,relation_dom(C)) ) ) ) ).
fof(t88_relat_1,lemma,
! [A,B] :
( relation(B)
=> subset(relation_dom_restriction(B,A),B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
fof(t8_funct_1,lemma,
! [A,B,C] :
( ( relation(C)
& function(C) )
=> ( in(ordered_pair(A,B),C)
<=> ( in(A,relation_dom(C))
& B = apply(C,A) ) ) ) ).
fof(t8_wellord1,lemma,
! [A] :
( relation(A)
=> ( well_orders(A,relation_field(A))
<=> well_ordering(A) ) ) ).
fof(t8_xboole_1,lemma,
! [A,B,C] :
( ( subset(A,B)
& subset(C,B) )
=> subset(set_union2(A,C),B) ) ).
fof(t8_zfmisc_1,lemma,
! [A,B,C] :
( singleton(A) = unordered_pair(B,C)
=> A = B ) ).
fof(t90_relat_1,lemma,
! [A,B] :
( relation(B)
=> relation_dom(relation_dom_restriction(B,A)) = set_intersection2(relation_dom(B),A) ) ).
fof(t92_zfmisc_1,lemma,
! [A,B] :
( in(A,B)
=> subset(A,union(B)) ) ).
fof(t94_relat_1,lemma,
! [A,B] :
( relation(B)
=> relation_dom_restriction(B,A) = relation_composition(identity_relation(A),B) ) ).
fof(t99_relat_1,lemma,
! [A,B] :
( relation(B)
=> subset(relation_rng(relation_dom_restriction(B,A)),relation_rng(B)) ) ).
fof(t99_zfmisc_1,lemma,
! [A] : union(powerset(A)) = A ).
fof(t9_tarski,axiom,
! [A] :
? [B] :
( in(A,B)
& ! [C,D] :
( ( in(C,B)
& subset(D,C) )
=> in(D,B) )
& ! [C] :
~ ( in(C,B)
& ! [D] :
~ ( in(D,B)
& ! [E] :
( subset(E,C)
=> in(E,D) ) ) )
& ! [C] :
~ ( subset(C,B)
& ~ are_equipotent(C,B)
& ~ in(C,B) ) ) ).
fof(t9_zfmisc_1,lemma,
! [A,B,C] :
( singleton(A) = unordered_pair(B,C)
=> B = C ) ).
%------------------------------------------------------------------------------