TPTP Problem File: SEU260+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU260+1 : TPTP v8.2.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem t53_wellord1
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-t53_wellord1 [Urb07]

% Status   : CounterSatisfiable
% Rating   : 1.00 v5.4.0, 0.86 v5.3.0, 1.00 v3.3.0
% Syntax   : Number of formulae    :   61 (  24 unt;   0 def)
%            Number of atoms       :  181 (  24 equ)
%            Maximal formula atoms :   15 (   2 avg)
%            Number of connectives :  145 (  25   ~;   1   |;  60   &)
%                                         (  14 <=>;  45  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   5 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :   16 (  14 usr;   1 prp; 0-3 aty)
%            Number of functors    :   14 (  14 usr;   1 con; 0-2 aty)
%            Number of variables   :  102 (  94   !;   8   ?)
% SPC      : FOF_CSA_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(cc1_funct_1,axiom,
    ! [A] :
      ( empty(A)
     => function(A) ) ).

fof(cc2_funct_1,axiom,
    ! [A] :
      ( ( relation(A)
        & empty(A)
        & function(A) )
     => ( relation(A)
        & function(A)
        & one_to_one(A) ) ) ).

fof(commutativity_k2_tarski,axiom,
    ! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).

fof(commutativity_k2_xboole_0,axiom,
    ! [A,B] : set_union2(A,B) = set_union2(B,A) ).

fof(d13_funct_1,axiom,
    ! [A] :
      ( ( relation(A)
        & function(A) )
     => ! [B,C] :
          ( C = relation_inverse_image(A,B)
        <=> ! [D] :
              ( in(D,C)
            <=> ( in(D,relation_dom(A))
                & in(apply(A,D),B) ) ) ) ) ).

fof(d1_wellord1,axiom,
    ! [A] :
      ( relation(A)
     => ! [B,C] :
          ( C = fiber(A,B)
        <=> ! [D] :
              ( in(D,C)
            <=> ( D != B
                & in(ordered_pair(D,B),A) ) ) ) ) ).

fof(d2_wellord1,axiom,
    ! [A] :
      ( relation(A)
     => ( well_founded_relation(A)
      <=> ! [B] :
            ~ ( subset(B,relation_field(A))
              & B != empty_set
              & ! [C] :
                  ~ ( in(C,B)
                    & disjoint(fiber(A,C),B) ) ) ) ) ).

fof(d5_funct_1,axiom,
    ! [A] :
      ( ( relation(A)
        & function(A) )
     => ! [B] :
          ( B = relation_rng(A)
        <=> ! [C] :
              ( in(C,B)
            <=> ? [D] :
                  ( in(D,relation_dom(A))
                  & C = apply(A,D) ) ) ) ) ).

fof(d5_tarski,axiom,
    ! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).

fof(d6_relat_1,axiom,
    ! [A] :
      ( relation(A)
     => relation_field(A) = set_union2(relation_dom(A),relation_rng(A)) ) ).

fof(d7_wellord1,axiom,
    ! [A] :
      ( relation(A)
     => ! [B] :
          ( relation(B)
         => ! [C] :
              ( ( relation(C)
                & function(C) )
             => ( relation_isomorphism(A,B,C)
              <=> ( relation_dom(C) = relation_field(A)
                  & relation_rng(C) = relation_field(B)
                  & one_to_one(C)
                  & ! [D,E] :
                      ( in(ordered_pair(D,E),A)
                    <=> ( in(D,relation_field(A))
                        & in(E,relation_field(A))
                        & in(ordered_pair(apply(C,D),apply(C,E)),B) ) ) ) ) ) ) ) ).

fof(dt_k10_relat_1,axiom,
    $true ).

fof(dt_k1_funct_1,axiom,
    $true ).

fof(dt_k1_relat_1,axiom,
    $true ).

fof(dt_k1_tarski,axiom,
    $true ).

fof(dt_k1_wellord1,axiom,
    $true ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_funct_1,axiom,
    ! [A] :
      ( ( relation(A)
        & function(A) )
     => ( relation(function_inverse(A))
        & function(function_inverse(A)) ) ) ).

fof(dt_k2_relat_1,axiom,
    $true ).

fof(dt_k2_tarski,axiom,
    $true ).

fof(dt_k2_xboole_0,axiom,
    $true ).

fof(dt_k3_relat_1,axiom,
    $true ).

fof(dt_k4_tarski,axiom,
    $true ).

fof(dt_k5_relat_1,axiom,
    ! [A,B] :
      ( ( relation(A)
        & relation(B) )
     => relation(relation_composition(A,B)) ) ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : element(B,A) ).

fof(fc1_funct_1,axiom,
    ! [A,B] :
      ( ( relation(A)
        & function(A)
        & relation(B)
        & function(B) )
     => ( relation(relation_composition(A,B))
        & function(relation_composition(A,B)) ) ) ).

fof(fc1_xboole_0,axiom,
    empty(empty_set) ).

fof(fc1_zfmisc_1,axiom,
    ! [A,B] : ~ empty(ordered_pair(A,B)) ).

fof(fc2_xboole_0,axiom,
    ! [A,B] :
      ( ~ empty(A)
     => ~ empty(set_union2(A,B)) ) ).

fof(fc3_xboole_0,axiom,
    ! [A,B] :
      ( ~ empty(A)
     => ~ empty(set_union2(B,A)) ) ).

fof(idempotence_k2_xboole_0,axiom,
    ! [A,B] : set_union2(A,A) = A ).

fof(l1_wellord1,axiom,
    ! [A] :
      ( relation(A)
     => ( reflexive(A)
      <=> ! [B] :
            ( in(B,relation_field(A))
           => in(ordered_pair(B,B),A) ) ) ) ).

fof(l2_wellord1,axiom,
    ! [A] :
      ( relation(A)
     => ( transitive(A)
      <=> ! [B,C,D] :
            ( ( in(ordered_pair(B,C),A)
              & in(ordered_pair(C,D),A) )
           => in(ordered_pair(B,D),A) ) ) ) ).

fof(l3_wellord1,axiom,
    ! [A] :
      ( relation(A)
     => ( antisymmetric(A)
      <=> ! [B,C] :
            ( ( in(ordered_pair(B,C),A)
              & in(ordered_pair(C,B),A) )
           => B = C ) ) ) ).

fof(l4_wellord1,axiom,
    ! [A] :
      ( relation(A)
     => ( connected(A)
      <=> ! [B,C] :
            ~ ( in(B,relation_field(A))
              & in(C,relation_field(A))
              & B != C
              & ~ in(ordered_pair(B,C),A)
              & ~ in(ordered_pair(C,B),A) ) ) ) ).

fof(rc1_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & function(A) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : empty(A) ).

fof(rc2_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & empty(A)
      & function(A) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ empty(A) ).

fof(rc3_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & function(A)
      & one_to_one(A) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(symmetry_r1_xboole_0,axiom,
    ! [A,B] :
      ( disjoint(A,B)
     => disjoint(B,A) ) ).

fof(t167_relat_1,axiom,
    ! [A,B] :
      ( relation(B)
     => subset(relation_inverse_image(B,A),relation_dom(B)) ) ).

fof(t174_relat_1,axiom,
    ! [A,B] :
      ( relation(B)
     => ~ ( A != empty_set
          & subset(A,relation_rng(B))
          & relation_inverse_image(B,A) = empty_set ) ) ).

fof(t1_boole,axiom,
    ! [A] : set_union2(A,empty_set) = A ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( element(A,B)
     => ( empty(B)
        | in(A,B) ) ) ).

fof(t30_relat_1,axiom,
    ! [A,B,C] :
      ( relation(C)
     => ( in(ordered_pair(A,B),C)
       => ( in(A,relation_field(C))
          & in(B,relation_field(C)) ) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( element(A,powerset(B))
    <=> subset(A,B) ) ).

fof(t3_xboole_0,axiom,
    ! [A,B] :
      ( ~ ( ~ disjoint(A,B)
          & ! [C] :
              ~ ( in(C,A)
                & in(C,B) ) )
      & ~ ( ? [C] :
              ( in(C,A)
              & in(C,B) )
          & disjoint(A,B) ) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( in(A,B)
        & element(B,powerset(C)) )
     => element(A,C) ) ).

fof(t53_wellord1,conjecture,
    ! [A] :
      ( relation(A)
     => ! [B] :
          ( relation(B)
         => ! [C] :
              ( ( relation(C)
                & function(C) )
             => ( relation_isomorphism(A,B,C)
               => ( ( reflexive(A)
                   => reflexive(B) )
                  & ( transitive(A)
                   => transitive(B) )
                  & ( connected(A)
                   => connected(B) )
                  & ( antisymmetric(A)
                   => antisymmetric(B) )
                  & ( well_founded_relation(A)
                   => well_founded_relation(B) ) ) ) ) ) ) ).

fof(t55_funct_1,axiom,
    ! [A] :
      ( ( relation(A)
        & function(A) )
     => ( one_to_one(A)
       => ( relation_rng(A) = relation_dom(function_inverse(A))
          & relation_dom(A) = relation_rng(function_inverse(A)) ) ) ) ).

fof(t57_funct_1,axiom,
    ! [A,B] :
      ( ( relation(B)
        & function(B) )
     => ( ( one_to_one(B)
          & in(A,relation_rng(B)) )
       => ( A = apply(B,apply(function_inverse(B),A))
          & A = apply(relation_composition(function_inverse(B),B),A) ) ) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( in(A,B)
        & element(B,powerset(C))
        & empty(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( empty(A)
     => A = empty_set ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & empty(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( empty(A)
        & A != B
        & empty(B) ) ).

%------------------------------------------------------------------------------