TPTP Problem File: SEU252+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU252+1 : TPTP v9.0.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem t22_wellord1
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-t22_wellord1 [Urb07]

% Status   : Theorem
% Rating   : 0.30 v9.0.0, 0.28 v8.1.0, 0.31 v7.5.0, 0.34 v7.4.0, 0.23 v7.3.0, 0.24 v7.2.0, 0.21 v7.1.0, 0.30 v7.0.0, 0.33 v6.4.0, 0.35 v6.3.0, 0.38 v6.2.0, 0.36 v6.1.0, 0.37 v6.0.0, 0.35 v5.5.0, 0.48 v5.4.0, 0.54 v5.3.0, 0.67 v5.2.0, 0.55 v5.1.0, 0.57 v5.0.0, 0.58 v4.1.0, 0.57 v4.0.0, 0.58 v3.7.0, 0.55 v3.5.0, 0.53 v3.3.0
% Syntax   : Number of formulae    :   45 (  24 unt;   0 def)
%            Number of atoms       :   82 (  12 equ)
%            Maximal formula atoms :    6 (   1 avg)
%            Number of connectives :   47 (  10   ~;   1   |;  15   &)
%                                         (   3 <=>;  18  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    7 (   3 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    9 (   7 usr;   1 prp; 0-2 aty)
%            Number of functors    :   11 (  11 usr;   1 con; 0-2 aty)
%            Number of variables   :   59 (  53   !;   6   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(cc1_funct_1,axiom,
    ! [A] :
      ( empty(A)
     => function(A) ) ).

fof(cc2_funct_1,axiom,
    ! [A] :
      ( ( relation(A)
        & empty(A)
        & function(A) )
     => ( relation(A)
        & function(A)
        & one_to_one(A) ) ) ).

fof(commutativity_k2_tarski,axiom,
    ! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).

fof(commutativity_k2_xboole_0,axiom,
    ! [A,B] : set_union2(A,B) = set_union2(B,A) ).

fof(commutativity_k3_xboole_0,axiom,
    ! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).

fof(d5_tarski,axiom,
    ! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).

fof(d6_relat_1,axiom,
    ! [A] :
      ( relation(A)
     => relation_field(A) = set_union2(relation_dom(A),relation_rng(A)) ) ).

fof(d6_wellord1,axiom,
    ! [A] :
      ( relation(A)
     => ! [B] : relation_restriction(A,B) = set_intersection2(A,cartesian_product2(B,B)) ) ).

fof(dt_k1_relat_1,axiom,
    $true ).

fof(dt_k1_tarski,axiom,
    $true ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k2_relat_1,axiom,
    $true ).

fof(dt_k2_tarski,axiom,
    $true ).

fof(dt_k2_wellord1,axiom,
    ! [A,B] :
      ( relation(A)
     => relation(relation_restriction(A,B)) ) ).

fof(dt_k2_xboole_0,axiom,
    $true ).

fof(dt_k2_zfmisc_1,axiom,
    $true ).

fof(dt_k3_relat_1,axiom,
    $true ).

fof(dt_k3_xboole_0,axiom,
    $true ).

fof(dt_k4_tarski,axiom,
    $true ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : element(B,A) ).

fof(fc1_xboole_0,axiom,
    empty(empty_set) ).

fof(fc1_zfmisc_1,axiom,
    ! [A,B] : ~ empty(ordered_pair(A,B)) ).

fof(fc2_xboole_0,axiom,
    ! [A,B] :
      ( ~ empty(A)
     => ~ empty(set_union2(A,B)) ) ).

fof(fc3_xboole_0,axiom,
    ! [A,B] :
      ( ~ empty(A)
     => ~ empty(set_union2(B,A)) ) ).

fof(idempotence_k2_xboole_0,axiom,
    ! [A,B] : set_union2(A,A) = A ).

fof(idempotence_k3_xboole_0,axiom,
    ! [A,B] : set_intersection2(A,A) = A ).

fof(l1_wellord1,axiom,
    ! [A] :
      ( relation(A)
     => ( reflexive(A)
      <=> ! [B] :
            ( in(B,relation_field(A))
           => in(ordered_pair(B,B),A) ) ) ) ).

fof(rc1_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & function(A) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : empty(A) ).

fof(rc2_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & empty(A)
      & function(A) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ empty(A) ).

fof(rc3_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & function(A)
      & one_to_one(A) ) ).

fof(t106_zfmisc_1,axiom,
    ! [A,B,C,D] :
      ( in(ordered_pair(A,B),cartesian_product2(C,D))
    <=> ( in(A,C)
        & in(B,D) ) ) ).

fof(t16_wellord1,axiom,
    ! [A,B,C] :
      ( relation(C)
     => ( in(A,relation_restriction(C,B))
      <=> ( in(A,C)
          & in(A,cartesian_product2(B,B)) ) ) ) ).

fof(t19_wellord1,axiom,
    ! [A,B,C] :
      ( relation(C)
     => ( in(A,relation_field(relation_restriction(C,B)))
       => ( in(A,relation_field(C))
          & in(A,B) ) ) ) ).

fof(t1_boole,axiom,
    ! [A] : set_union2(A,empty_set) = A ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t22_wellord1,conjecture,
    ! [A,B] :
      ( relation(B)
     => ( reflexive(B)
       => reflexive(relation_restriction(B,A)) ) ) ).

fof(t2_boole,axiom,
    ! [A] : set_intersection2(A,empty_set) = empty_set ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( element(A,B)
     => ( empty(B)
        | in(A,B) ) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( empty(A)
     => A = empty_set ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & empty(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( empty(A)
        & A != B
        & empty(B) ) ).

%------------------------------------------------------------------------------