TPTP Problem File: SEU249+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU249+1 : TPTP v8.2.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem t19_wellord1
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-t19_wellord1 [Urb07]

% Status   : Theorem
% Rating   : 0.72 v8.2.0, 0.67 v7.5.0, 0.72 v7.4.0, 0.67 v7.3.0, 0.72 v7.1.0, 0.70 v7.0.0, 0.77 v6.4.0, 0.73 v6.3.0, 0.67 v6.2.0, 0.80 v6.1.0, 0.87 v6.0.0, 0.78 v5.5.0, 0.81 v5.4.0, 0.82 v5.3.0, 0.85 v5.2.0, 0.80 v5.1.0, 0.86 v5.0.0, 0.92 v4.1.0, 0.87 v4.0.1, 0.83 v4.0.0, 0.88 v3.7.0, 0.85 v3.5.0, 0.84 v3.4.0, 0.89 v3.3.0
% Syntax   : Number of formulae    :   52 (  20 unt;   0 def)
%            Number of atoms       :  104 (  16 equ)
%            Maximal formula atoms :    6 (   2 avg)
%            Number of connectives :   62 (  10   ~;   2   |;  21   &)
%                                         (   5 <=>;  24  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    9 (   7 usr;   1 prp; 0-2 aty)
%            Number of functors    :   11 (  11 usr;   1 con; 0-2 aty)
%            Number of variables   :   80 (  74   !;   6   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(cc1_funct_1,axiom,
    ! [A] :
      ( empty(A)
     => function(A) ) ).

fof(cc2_funct_1,axiom,
    ! [A] :
      ( ( relation(A)
        & empty(A)
        & function(A) )
     => ( relation(A)
        & function(A)
        & one_to_one(A) ) ) ).

fof(commutativity_k2_xboole_0,axiom,
    ! [A,B] : set_union2(A,B) = set_union2(B,A) ).

fof(commutativity_k3_xboole_0,axiom,
    ! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).

fof(d2_xboole_0,axiom,
    ! [A,B,C] :
      ( C = set_union2(A,B)
    <=> ! [D] :
          ( in(D,C)
        <=> ( in(D,A)
            | in(D,B) ) ) ) ).

fof(d3_xboole_0,axiom,
    ! [A,B,C] :
      ( C = set_intersection2(A,B)
    <=> ! [D] :
          ( in(D,C)
        <=> ( in(D,A)
            & in(D,B) ) ) ) ).

fof(d6_relat_1,axiom,
    ! [A] :
      ( relation(A)
     => relation_field(A) = set_union2(relation_dom(A),relation_rng(A)) ) ).

fof(d6_wellord1,axiom,
    ! [A] :
      ( relation(A)
     => ! [B] : relation_restriction(A,B) = set_intersection2(A,cartesian_product2(B,B)) ) ).

fof(dt_k1_relat_1,axiom,
    $true ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_relat_1,axiom,
    $true ).

fof(dt_k2_wellord1,axiom,
    ! [A,B] :
      ( relation(A)
     => relation(relation_restriction(A,B)) ) ).

fof(dt_k2_xboole_0,axiom,
    $true ).

fof(dt_k2_zfmisc_1,axiom,
    $true ).

fof(dt_k3_relat_1,axiom,
    $true ).

fof(dt_k3_xboole_0,axiom,
    $true ).

fof(dt_k7_relat_1,axiom,
    ! [A,B] :
      ( relation(A)
     => relation(relation_dom_restriction(A,B)) ) ).

fof(dt_k8_relat_1,axiom,
    ! [A,B] :
      ( relation(B)
     => relation(relation_rng_restriction(A,B)) ) ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : element(B,A) ).

fof(fc1_xboole_0,axiom,
    empty(empty_set) ).

fof(fc2_xboole_0,axiom,
    ! [A,B] :
      ( ~ empty(A)
     => ~ empty(set_union2(A,B)) ) ).

fof(fc3_xboole_0,axiom,
    ! [A,B] :
      ( ~ empty(A)
     => ~ empty(set_union2(B,A)) ) ).

fof(fc4_funct_1,axiom,
    ! [A,B] :
      ( ( relation(A)
        & function(A) )
     => ( relation(relation_dom_restriction(A,B))
        & function(relation_dom_restriction(A,B)) ) ) ).

fof(fc5_funct_1,axiom,
    ! [A,B] :
      ( ( relation(B)
        & function(B) )
     => ( relation(relation_rng_restriction(A,B))
        & function(relation_rng_restriction(A,B)) ) ) ).

fof(idempotence_k2_xboole_0,axiom,
    ! [A,B] : set_union2(A,A) = A ).

fof(idempotence_k3_xboole_0,axiom,
    ! [A,B] : set_intersection2(A,A) = A ).

fof(l29_wellord1,axiom,
    ! [A,B] :
      ( relation(B)
     => subset(relation_dom(relation_rng_restriction(A,B)),relation_dom(B)) ) ).

fof(rc1_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & function(A) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : empty(A) ).

fof(rc2_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & empty(A)
      & function(A) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ empty(A) ).

fof(rc3_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & function(A)
      & one_to_one(A) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(t119_relat_1,axiom,
    ! [A,B] :
      ( relation(B)
     => relation_rng(relation_rng_restriction(A,B)) = set_intersection2(relation_rng(B),A) ) ).

fof(t17_wellord1,axiom,
    ! [A,B] :
      ( relation(B)
     => relation_restriction(B,A) = relation_dom_restriction(relation_rng_restriction(A,B),A) ) ).

fof(t18_wellord1,axiom,
    ! [A,B] :
      ( relation(B)
     => relation_restriction(B,A) = relation_rng_restriction(A,relation_dom_restriction(B,A)) ) ).

fof(t19_wellord1,conjecture,
    ! [A,B,C] :
      ( relation(C)
     => ( in(A,relation_field(relation_restriction(C,B)))
       => ( in(A,relation_field(C))
          & in(A,B) ) ) ) ).

fof(t1_boole,axiom,
    ! [A] : set_union2(A,empty_set) = A ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t2_boole,axiom,
    ! [A] : set_intersection2(A,empty_set) = empty_set ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( element(A,B)
     => ( empty(B)
        | in(A,B) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( element(A,powerset(B))
    <=> subset(A,B) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( in(A,B)
        & element(B,powerset(C)) )
     => element(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( in(A,B)
        & element(B,powerset(C))
        & empty(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( empty(A)
     => A = empty_set ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & empty(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( empty(A)
        & A != B
        & empty(B) ) ).

fof(t90_relat_1,axiom,
    ! [A,B] :
      ( relation(B)
     => relation_dom(relation_dom_restriction(B,A)) = set_intersection2(relation_dom(B),A) ) ).

fof(t99_relat_1,axiom,
    ! [A,B] :
      ( relation(B)
     => subset(relation_rng(relation_dom_restriction(B,A)),relation_rng(B)) ) ).

%------------------------------------------------------------------------------