TPTP Problem File: SEU232+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU232+1 : TPTP v8.2.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem t23_ordinal1
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-t23_ordinal1 [Urb07]

% Status   : Theorem
% Rating   : 0.64 v8.2.0, 0.69 v8.1.0, 0.64 v7.5.0, 0.66 v7.4.0, 0.50 v7.3.0, 0.55 v7.2.0, 0.52 v7.1.0, 0.43 v7.0.0, 0.53 v6.4.0, 0.58 v6.2.0, 0.72 v6.1.0, 0.77 v6.0.0, 0.78 v5.5.0, 0.93 v5.3.0, 0.96 v5.2.0, 0.95 v5.0.0, 0.96 v3.7.0, 0.90 v3.5.0, 0.95 v3.4.0, 0.89 v3.3.0
% Syntax   : Number of formulae    :   44 (  11 unt;   0 def)
%            Number of atoms       :  106 (   6 equ)
%            Maximal formula atoms :    6 (   2 avg)
%            Number of connectives :   78 (  16   ~;   1   |;  39   &)
%                                         (   7 <=>;  15  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   11 (   4 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :   13 (  11 usr;   1 prp; 0-2 aty)
%            Number of functors    :    3 (   3 usr;   1 con; 0-2 aty)
%            Number of variables   :   64 (  53   !;  11   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(cc1_funct_1,axiom,
    ! [A] :
      ( empty(A)
     => function(A) ) ).

fof(cc1_ordinal1,axiom,
    ! [A] :
      ( ordinal(A)
     => ( epsilon_transitive(A)
        & epsilon_connected(A) ) ) ).

fof(cc1_relat_1,axiom,
    ! [A] :
      ( empty(A)
     => relation(A) ) ).

fof(cc2_funct_1,axiom,
    ! [A] :
      ( ( relation(A)
        & empty(A)
        & function(A) )
     => ( relation(A)
        & function(A)
        & one_to_one(A) ) ) ).

fof(cc2_ordinal1,axiom,
    ! [A] :
      ( ( epsilon_transitive(A)
        & epsilon_connected(A) )
     => ordinal(A) ) ).

fof(d2_ordinal1,axiom,
    ! [A] :
      ( epsilon_transitive(A)
    <=> ! [B] :
          ( in(B,A)
         => subset(B,A) ) ) ).

fof(d3_ordinal1,axiom,
    ! [A] :
      ( epsilon_connected(A)
    <=> ! [B,C] :
          ~ ( in(B,A)
            & in(C,A)
            & ~ in(B,C)
            & B != C
            & ~ in(C,B) ) ) ).

fof(d3_tarski,axiom,
    ! [A,B] :
      ( subset(A,B)
    <=> ! [C] :
          ( in(C,A)
         => in(C,B) ) ) ).

fof(d4_ordinal1,axiom,
    ! [A] :
      ( ordinal(A)
    <=> ( epsilon_transitive(A)
        & epsilon_connected(A) ) ) ).

fof(d4_xboole_0,axiom,
    ! [A,B,C] :
      ( C = set_difference(A,B)
    <=> ! [D] :
          ( in(D,C)
        <=> ( in(D,A)
            & ~ in(D,B) ) ) ) ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k4_xboole_0,axiom,
    $true ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : element(B,A) ).

fof(fc12_relat_1,axiom,
    ( empty(empty_set)
    & relation(empty_set)
    & relation_empty_yielding(empty_set) ) ).

fof(fc1_xboole_0,axiom,
    empty(empty_set) ).

fof(fc3_relat_1,axiom,
    ! [A,B] :
      ( ( relation(A)
        & relation(B) )
     => relation(set_difference(A,B)) ) ).

fof(fc4_relat_1,axiom,
    ( empty(empty_set)
    & relation(empty_set) ) ).

fof(rc1_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & function(A) ) ).

fof(rc1_ordinal1,axiom,
    ? [A] :
      ( epsilon_transitive(A)
      & epsilon_connected(A)
      & ordinal(A) ) ).

fof(rc1_relat_1,axiom,
    ? [A] :
      ( empty(A)
      & relation(A) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : empty(A) ).

fof(rc2_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & empty(A)
      & function(A) ) ).

fof(rc2_relat_1,axiom,
    ? [A] :
      ( ~ empty(A)
      & relation(A) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ empty(A) ).

fof(rc3_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & function(A)
      & one_to_one(A) ) ).

fof(rc3_relat_1,axiom,
    ? [A] :
      ( relation(A)
      & relation_empty_yielding(A) ) ).

fof(rc4_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & relation_empty_yielding(A)
      & function(A) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t23_ordinal1,conjecture,
    ! [A,B] :
      ( ordinal(B)
     => ( in(A,B)
       => ordinal(A) ) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( element(A,B)
     => ( empty(B)
        | in(A,B) ) ) ).

fof(t3_boole,axiom,
    ! [A] : set_difference(A,empty_set) = A ).

fof(t3_ordinal1,axiom,
    ! [A,B,C] :
      ~ ( in(A,B)
        & in(B,C)
        & in(C,A) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( element(A,powerset(B))
    <=> subset(A,B) ) ).

fof(t4_boole,axiom,
    ! [A] : set_difference(empty_set,A) = empty_set ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( in(A,B)
        & element(B,powerset(C)) )
     => element(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( in(A,B)
        & element(B,powerset(C))
        & empty(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( empty(A)
     => A = empty_set ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & empty(B) ) ).

fof(t7_tarski,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & ! [C] :
            ~ ( in(C,B)
              & ! [D] :
                  ~ ( in(D,B)
                    & in(D,C) ) ) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( empty(A)
        & A != B
        & empty(B) ) ).

%------------------------------------------------------------------------------