TPTP Problem File: SEU191+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU191+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t74_relat_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t74_relat_1 [Urb07]
% Status : Theorem
% Rating : 0.48 v9.0.0, 0.47 v8.2.0, 0.64 v8.1.0, 0.50 v7.4.0, 0.43 v7.3.0, 0.52 v7.1.0, 0.48 v7.0.0, 0.57 v6.4.0, 0.58 v6.3.0, 0.54 v6.2.0, 0.56 v6.1.0, 0.67 v6.0.0, 0.70 v5.5.0, 0.78 v5.4.0, 0.79 v5.3.0, 0.81 v5.2.0, 0.70 v5.1.0, 0.71 v5.0.0, 0.75 v4.1.0, 0.74 v4.0.0, 0.75 v3.7.0, 0.70 v3.5.0, 0.79 v3.4.0, 0.84 v3.3.0
% Syntax : Number of formulae : 31 ( 15 unt; 0 def)
% Number of atoms : 64 ( 7 equ)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 42 ( 9 ~; 1 |; 14 &)
% ( 5 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 6 ( 4 usr; 1 prp; 0-2 aty)
% Number of functors : 6 ( 6 usr; 1 con; 0-2 aty)
% Number of variables : 48 ( 42 !; 6 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(d10_relat_1,axiom,
! [A,B] :
( relation(B)
=> ( B = identity_relation(A)
<=> ! [C,D] :
( in(ordered_pair(C,D),B)
<=> ( in(C,A)
& C = D ) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(d8_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ! [C] :
( relation(C)
=> ( C = relation_composition(A,B)
<=> ! [D,E] :
( in(ordered_pair(D,E),C)
<=> ? [F] :
( in(ordered_pair(D,F),A)
& in(ordered_pair(F,E),B) ) ) ) ) ) ) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_k5_relat_1,axiom,
! [A,B] :
( ( relation(A)
& relation(B) )
=> relation(relation_composition(A,B)) ) ).
fof(dt_k6_relat_1,axiom,
! [A] : relation(identity_relation(A)) ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc10_relat_1,axiom,
! [A,B] :
( ( empty(A)
& relation(B) )
=> ( empty(relation_composition(B,A))
& relation(relation_composition(B,A)) ) ) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(fc2_subset_1,axiom,
! [A] : ~ empty(singleton(A)) ).
fof(fc3_subset_1,axiom,
! [A,B] : ~ empty(unordered_pair(A,B)) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(fc9_relat_1,axiom,
! [A,B] :
( ( empty(A)
& relation(B) )
=> ( empty(relation_composition(A,B))
& relation(relation_composition(A,B)) ) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t74_relat_1,conjecture,
! [A,B,C,D] :
( relation(D)
=> ( in(ordered_pair(A,B),relation_composition(identity_relation(C),D))
<=> ( in(A,C)
& in(ordered_pair(A,B),D) ) ) ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------