TPTP Problem File: SEU181+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU181+1 : TPTP v8.2.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem t37_relat_1
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-t37_relat_1 [Urb07]

% Status   : Theorem
% Rating   : 0.64 v8.2.0, 0.67 v7.5.0, 0.66 v7.4.0, 0.57 v7.3.0, 0.59 v7.2.0, 0.55 v7.1.0, 0.61 v7.0.0, 0.60 v6.4.0, 0.62 v6.3.0, 0.58 v6.2.0, 0.72 v6.1.0, 0.83 v5.5.0, 0.78 v5.4.0, 0.79 v5.3.0, 0.78 v5.2.0, 0.70 v5.1.0, 0.71 v5.0.0, 0.75 v4.1.0, 0.74 v4.0.1, 0.78 v4.0.0, 0.79 v3.7.0, 0.80 v3.5.0, 0.79 v3.4.0, 0.89 v3.3.0
% Syntax   : Number of formulae    :   39 (  19 unt;   0 def)
%            Number of atoms       :   74 (  11 equ)
%            Maximal formula atoms :    5 (   1 avg)
%            Number of connectives :   47 (  12   ~;   1   |;  11   &)
%                                         (   9 <=>;  14  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    9 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    7 (   5 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   1 con; 0-2 aty)
%            Number of variables   :   60 (  52   !;   8   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(commutativity_k2_tarski,axiom,
    ! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).

fof(d10_xboole_0,axiom,
    ! [A,B] :
      ( A = B
    <=> ( subset(A,B)
        & subset(B,A) ) ) ).

fof(d3_tarski,axiom,
    ! [A,B] :
      ( subset(A,B)
    <=> ! [C] :
          ( in(C,A)
         => in(C,B) ) ) ).

fof(d4_relat_1,axiom,
    ! [A] :
      ( relation(A)
     => ! [B] :
          ( B = relation_dom(A)
        <=> ! [C] :
              ( in(C,B)
            <=> ? [D] : in(ordered_pair(C,D),A) ) ) ) ).

fof(d5_relat_1,axiom,
    ! [A] :
      ( relation(A)
     => ! [B] :
          ( B = relation_rng(A)
        <=> ! [C] :
              ( in(C,B)
            <=> ? [D] : in(ordered_pair(D,C),A) ) ) ) ).

fof(d5_tarski,axiom,
    ! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).

fof(d7_relat_1,axiom,
    ! [A] :
      ( relation(A)
     => ! [B] :
          ( relation(B)
         => ( B = relation_inverse(A)
          <=> ! [C,D] :
                ( in(ordered_pair(C,D),B)
              <=> in(ordered_pair(D,C),A) ) ) ) ) ).

fof(dt_k1_relat_1,axiom,
    $true ).

fof(dt_k1_tarski,axiom,
    $true ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_relat_1,axiom,
    $true ).

fof(dt_k2_tarski,axiom,
    $true ).

fof(dt_k4_relat_1,axiom,
    ! [A] :
      ( relation(A)
     => relation(relation_inverse(A)) ) ).

fof(dt_k4_tarski,axiom,
    $true ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : element(B,A) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ empty(powerset(A)) ).

fof(fc1_xboole_0,axiom,
    empty(empty_set) ).

fof(fc1_zfmisc_1,axiom,
    ! [A,B] : ~ empty(ordered_pair(A,B)) ).

fof(fc2_subset_1,axiom,
    ! [A] : ~ empty(singleton(A)) ).

fof(fc3_subset_1,axiom,
    ! [A,B] : ~ empty(unordered_pair(A,B)) ).

fof(involutiveness_k4_relat_1,axiom,
    ! [A] :
      ( relation(A)
     => relation_inverse(relation_inverse(A)) = A ) ).

fof(rc1_relat_1,axiom,
    ? [A] :
      ( empty(A)
      & relation(A) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B) ) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : empty(A) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( element(B,powerset(A))
      & empty(B) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ empty(A) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( element(A,B)
     => ( empty(B)
        | in(A,B) ) ) ).

fof(t37_relat_1,conjecture,
    ! [A] :
      ( relation(A)
     => ( relation_rng(A) = relation_dom(relation_inverse(A))
        & relation_dom(A) = relation_rng(relation_inverse(A)) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( element(A,powerset(B))
    <=> subset(A,B) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( in(A,B)
        & element(B,powerset(C)) )
     => element(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( in(A,B)
        & element(B,powerset(C))
        & empty(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( empty(A)
     => A = empty_set ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & empty(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( empty(A)
        & A != B
        & empty(B) ) ).

%------------------------------------------------------------------------------