TPTP Problem File: SEU175+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU175+1 : TPTP v8.2.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem t47_setfam_1
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-t47_setfam_1 [Urb07]

% Status   : Theorem
% Rating   : 1.00 v3.7.0, 0.95 v3.5.0, 1.00 v3.3.0
% Syntax   : Number of formulae    :   46 (  16 unt;   0 def)
%            Number of atoms       :  101 (  24 equ)
%            Maximal formula atoms :    8 (   2 avg)
%            Number of connectives :   69 (  14   ~;   1   |;  15   &)
%                                         (  12 <=>;  27  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    6 (   4 usr;   1 prp; 0-2 aty)
%            Number of functors    :   11 (  11 usr;   1 con; 0-3 aty)
%            Number of variables   :   83 (  77   !;   6   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(d10_xboole_0,axiom,
    ! [A,B] :
      ( A = B
    <=> ( subset(A,B)
        & subset(B,A) ) ) ).

fof(d1_setfam_1,axiom,
    ! [A,B] :
      ( ( A != empty_set
       => ( B = set_meet(A)
        <=> ! [C] :
              ( in(C,B)
            <=> ! [D] :
                  ( in(D,A)
                 => in(C,D) ) ) ) )
      & ( A = empty_set
       => ( B = set_meet(A)
        <=> B = empty_set ) ) ) ).

fof(d3_tarski,axiom,
    ! [A,B] :
      ( subset(A,B)
    <=> ! [C] :
          ( in(C,A)
         => in(C,B) ) ) ).

fof(d4_subset_1,axiom,
    ! [A] : cast_to_subset(A) = A ).

fof(d4_tarski,axiom,
    ! [A,B] :
      ( B = union(A)
    <=> ! [C] :
          ( in(C,B)
        <=> ? [D] :
              ( in(C,D)
              & in(D,A) ) ) ) ).

fof(d4_xboole_0,axiom,
    ! [A,B,C] :
      ( C = set_difference(A,B)
    <=> ! [D] :
          ( in(D,C)
        <=> ( in(D,A)
            & ~ in(D,B) ) ) ) ).

fof(d5_subset_1,axiom,
    ! [A,B] :
      ( element(B,powerset(A))
     => subset_complement(A,B) = set_difference(A,B) ) ).

fof(d8_setfam_1,axiom,
    ! [A,B] :
      ( element(B,powerset(powerset(A)))
     => ! [C] :
          ( element(C,powerset(powerset(A)))
         => ( C = complements_of_subsets(A,B)
          <=> ! [D] :
                ( element(D,powerset(A))
               => ( in(D,C)
                <=> in(subset_complement(A,D),B) ) ) ) ) ) ).

fof(dt_k1_setfam_1,axiom,
    $true ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_subset_1,axiom,
    ! [A] : element(cast_to_subset(A),powerset(A)) ).

fof(dt_k3_subset_1,axiom,
    ! [A,B] :
      ( element(B,powerset(A))
     => element(subset_complement(A,B),powerset(A)) ) ).

fof(dt_k3_tarski,axiom,
    $true ).

fof(dt_k4_xboole_0,axiom,
    $true ).

fof(dt_k5_setfam_1,axiom,
    ! [A,B] :
      ( element(B,powerset(powerset(A)))
     => element(union_of_subsets(A,B),powerset(A)) ) ).

fof(dt_k6_setfam_1,axiom,
    ! [A,B] :
      ( element(B,powerset(powerset(A)))
     => element(meet_of_subsets(A,B),powerset(A)) ) ).

fof(dt_k6_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => element(subset_difference(A,B,C),powerset(A)) ) ).

fof(dt_k7_setfam_1,axiom,
    ! [A,B] :
      ( element(B,powerset(powerset(A)))
     => element(complements_of_subsets(A,B),powerset(powerset(A))) ) ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : element(B,A) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ empty(powerset(A)) ).

fof(fc1_xboole_0,axiom,
    empty(empty_set) ).

fof(involutiveness_k3_subset_1,axiom,
    ! [A,B] :
      ( element(B,powerset(A))
     => subset_complement(A,subset_complement(A,B)) = B ) ).

fof(involutiveness_k7_setfam_1,axiom,
    ! [A,B] :
      ( element(B,powerset(powerset(A)))
     => complements_of_subsets(A,complements_of_subsets(A,B)) = B ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B) ) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : empty(A) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( element(B,powerset(A))
      & empty(B) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ empty(A) ).

fof(redefinition_k5_setfam_1,axiom,
    ! [A,B] :
      ( element(B,powerset(powerset(A)))
     => union_of_subsets(A,B) = union(B) ) ).

fof(redefinition_k6_setfam_1,axiom,
    ! [A,B] :
      ( element(B,powerset(powerset(A)))
     => meet_of_subsets(A,B) = set_meet(B) ) ).

fof(redefinition_k6_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => subset_difference(A,B,C) = set_difference(B,C) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( element(A,B)
     => ( empty(B)
        | in(A,B) ) ) ).

fof(t3_boole,axiom,
    ! [A] : set_difference(A,empty_set) = A ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( element(A,powerset(B))
    <=> subset(A,B) ) ).

fof(t46_setfam_1,axiom,
    ! [A,B] :
      ( element(B,powerset(powerset(A)))
     => ~ ( B != empty_set
          & complements_of_subsets(A,B) = empty_set ) ) ).

fof(t47_setfam_1,conjecture,
    ! [A,B] :
      ( element(B,powerset(powerset(A)))
     => ( B != empty_set
       => subset_difference(A,cast_to_subset(A),union_of_subsets(A,B)) = meet_of_subsets(A,complements_of_subsets(A,B)) ) ) ).

fof(t4_boole,axiom,
    ! [A] : set_difference(empty_set,A) = empty_set ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( in(A,B)
        & element(B,powerset(C)) )
     => element(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( in(A,B)
        & element(B,powerset(C))
        & empty(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( empty(A)
     => A = empty_set ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & empty(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( empty(A)
        & A != B
        & empty(B) ) ).

%------------------------------------------------------------------------------