TPTP Problem File: SEU136+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU136+2 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP chainy problem t40_xboole_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : chainy-t40_xboole_1 [Urb07]
% Status : Theorem
% Rating : 0.64 v9.0.0, 0.61 v8.2.0, 0.64 v8.1.0, 0.56 v7.5.0, 0.66 v7.4.0, 0.57 v7.3.0, 0.55 v7.2.0, 0.52 v7.1.0, 0.57 v7.0.0, 0.60 v6.4.0, 0.62 v6.3.0, 0.71 v6.2.0, 0.84 v6.1.0, 0.90 v6.0.0, 0.83 v5.5.0, 0.81 v5.4.0, 0.82 v5.3.0, 0.81 v5.2.0, 0.85 v5.1.0, 0.86 v5.0.0, 0.83 v4.1.0, 0.78 v4.0.0, 0.79 v3.7.0, 0.75 v3.5.0, 0.84 v3.3.0
% Syntax : Number of formulae : 49 ( 22 unt; 0 def)
% Number of atoms : 95 ( 24 equ)
% Maximal formula atoms : 6 ( 1 avg)
% Number of connectives : 65 ( 19 ~; 1 |; 17 &)
% ( 13 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 6 ( 4 usr; 1 prp; 0-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 96 ( 92 !; 4 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d10_xboole_0,axiom,
! [A,B] :
( A = B
<=> ( subset(A,B)
& subset(B,A) ) ) ).
fof(d1_xboole_0,axiom,
! [A] :
( A = empty_set
<=> ! [B] : ~ in(B,A) ) ).
fof(d2_xboole_0,axiom,
! [A,B,C] :
( C = set_union2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
| in(D,B) ) ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = set_intersection2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& in(D,B) ) ) ) ).
fof(d4_xboole_0,axiom,
! [A,B,C] :
( C = set_difference(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& ~ in(D,B) ) ) ) ).
fof(d7_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
<=> set_intersection2(A,B) = empty_set ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k2_xboole_0,axiom,
$true ).
fof(dt_k3_xboole_0,axiom,
$true ).
fof(dt_k4_xboole_0,axiom,
$true ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(l32_xboole_1,lemma,
! [A,B] :
( set_difference(A,B) = empty_set
<=> subset(A,B) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(symmetry_r1_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
=> disjoint(B,A) ) ).
fof(t12_xboole_1,lemma,
! [A,B] :
( subset(A,B)
=> set_union2(A,B) = B ) ).
fof(t17_xboole_1,lemma,
! [A,B] : subset(set_intersection2(A,B),A) ).
fof(t19_xboole_1,lemma,
! [A,B,C] :
( ( subset(A,B)
& subset(A,C) )
=> subset(A,set_intersection2(B,C)) ) ).
fof(t1_boole,axiom,
! [A] : set_union2(A,empty_set) = A ).
fof(t1_xboole_1,lemma,
! [A,B,C] :
( ( subset(A,B)
& subset(B,C) )
=> subset(A,C) ) ).
fof(t26_xboole_1,lemma,
! [A,B,C] :
( subset(A,B)
=> subset(set_intersection2(A,C),set_intersection2(B,C)) ) ).
fof(t28_xboole_1,lemma,
! [A,B] :
( subset(A,B)
=> set_intersection2(A,B) = A ) ).
fof(t2_boole,axiom,
! [A] : set_intersection2(A,empty_set) = empty_set ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( in(C,A)
<=> in(C,B) )
=> A = B ) ).
fof(t2_xboole_1,lemma,
! [A] : subset(empty_set,A) ).
fof(t33_xboole_1,lemma,
! [A,B,C] :
( subset(A,B)
=> subset(set_difference(A,C),set_difference(B,C)) ) ).
fof(t36_xboole_1,lemma,
! [A,B] : subset(set_difference(A,B),A) ).
fof(t37_xboole_1,lemma,
! [A,B] :
( set_difference(A,B) = empty_set
<=> subset(A,B) ) ).
fof(t39_xboole_1,lemma,
! [A,B] : set_union2(A,set_difference(B,A)) = set_union2(A,B) ).
fof(t3_boole,axiom,
! [A] : set_difference(A,empty_set) = A ).
fof(t3_xboole_0,lemma,
! [A,B] :
( ~ ( ~ disjoint(A,B)
& ! [C] :
~ ( in(C,A)
& in(C,B) ) )
& ~ ( ? [C] :
( in(C,A)
& in(C,B) )
& disjoint(A,B) ) ) ).
fof(t3_xboole_1,lemma,
! [A] :
( subset(A,empty_set)
=> A = empty_set ) ).
fof(t40_xboole_1,conjecture,
! [A,B] : set_difference(set_union2(A,B),B) = set_difference(A,B) ).
fof(t4_boole,axiom,
! [A] : set_difference(empty_set,A) = empty_set ).
fof(t4_xboole_0,lemma,
! [A,B] :
( ~ ( ~ disjoint(A,B)
& ! [C] : ~ in(C,set_intersection2(A,B)) )
& ~ ( ? [C] : in(C,set_intersection2(A,B))
& disjoint(A,B) ) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t7_xboole_1,lemma,
! [A,B] : subset(A,set_union2(A,B)) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
fof(t8_xboole_1,lemma,
! [A,B,C] :
( ( subset(A,B)
& subset(C,B) )
=> subset(set_union2(A,C),B) ) ).
%------------------------------------------------------------------------------