TPTP Problem File: SEU099+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU099+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Finite sets, theorem 30
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Dar90] Darmochwal (1990), Finite Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : finset_1__t30_finset_1 [Urb06]
% Status : Theorem
% Rating : 1.00 v7.4.0, 0.97 v7.1.0, 0.96 v7.0.0, 1.00 v3.7.0, 0.95 v3.5.0, 1.00 v3.2.0
% Syntax : Number of formulae : 72 ( 12 unt; 0 def)
% Number of atoms : 234 ( 13 equ)
% Maximal formula atoms : 19 ( 3 avg)
% Number of connectives : 202 ( 40 ~; 3 |; 116 &)
% ( 7 <=>; 36 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 21 ( 20 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 116 ( 89 !; 27 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_arytm_3,axiom,
! [A] :
( ordinal(A)
=> ! [B] :
( element(B,A)
=> ( epsilon_transitive(B)
& epsilon_connected(B)
& ordinal(B) ) ) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( empty(A)
=> finite(A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(cc2_arytm_3,axiom,
! [A] :
( ( empty(A)
& ordinal(A) )
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& natural(A) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( finite(A)
=> ! [B] :
( element(B,powerset(A))
=> finite(B) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(cc4_arytm_3,axiom,
! [A] :
( element(A,positive_rationals)
=> ( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& natural(A) ) ) ) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(d1_tarski,axiom,
! [A,B] :
( B = singleton(A)
<=> ! [C] :
( in(C,B)
<=> C = A ) ) ).
fof(d2_xboole_0,axiom,
! [A,B,C] :
( C = set_union2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
| in(D,B) ) ) ) ).
fof(d9_ordinal1,axiom,
! [A] :
( inclusion_linear(A)
<=> ! [B,C] :
( ( in(B,A)
& in(C,A) )
=> inclusion_comparable(B,C) ) ) ).
fof(d9_xboole_0,axiom,
! [A,B] :
( inclusion_comparable(A,B)
<=> ( subset(A,B)
| subset(B,A) ) ) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc1_finset_1,axiom,
! [A] :
( ~ empty(singleton(A))
& finite(singleton(A)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_ordinal1,axiom,
( relation(empty_set)
& relation_empty_yielding(empty_set)
& function(empty_set)
& one_to_one(empty_set)
& empty(empty_set)
& epsilon_transitive(empty_set)
& epsilon_connected(empty_set)
& ordinal(empty_set) ) ).
fof(fc2_relat_1,axiom,
! [A,B] :
( ( relation(A)
& relation(B) )
=> relation(set_union2(A,B)) ) ).
fof(fc2_subset_1,axiom,
! [A] : ~ empty(singleton(A)) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(fc8_arytm_3,axiom,
~ empty(positive_rationals) ).
fof(fc9_finset_1,axiom,
! [A,B] :
( ( finite(A)
& finite(B) )
=> finite(set_union2(A,B)) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(rc1_arytm_3,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& natural(A) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ empty(A)
& finite(A) ) ).
fof(rc1_funcop_1,axiom,
? [A] :
( relation(A)
& function(A)
& function_yielding(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc1_ordinal2,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& being_limit_ordinal(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_arytm_3,axiom,
? [A] :
( element(A,positive_rationals)
& ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_finset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B)
& relation(B)
& function(B)
& one_to_one(B)
& epsilon_transitive(B)
& epsilon_connected(B)
& ordinal(B)
& natural(B)
& finite(B) ) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_ordinal2,axiom,
? [A] :
( relation(A)
& function(A)
& transfinite_sequence(A)
& ordinal_yielding(A) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_arytm_3,axiom,
? [A] :
( element(A,positive_rationals)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& natural(A) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B)
& finite(B) ) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B)
& finite(B) ) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A)
& function(A) ) ).
fof(rc4_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& transfinite_sequence(A) ) ).
fof(rc5_funct_1,axiom,
? [A] :
( relation(A)
& relation_non_empty(A)
& function(A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(reflexivity_r3_xboole_0,axiom,
! [A,B] : inclusion_comparable(A,A) ).
fof(s2_finset_1__e6_46__finset_1,axiom,
! [A] :
( ( finite(A)
& ~ ( empty_set != empty_set
& ! [B] :
~ ( in(B,empty_set)
& ! [C] :
( in(C,empty_set)
=> subset(B,C) ) ) )
& ! [D,E] :
( ( in(D,A)
& subset(E,A)
& ~ ( E != empty_set
& ! [F] :
~ ( in(F,E)
& ! [G] :
( in(G,E)
=> subset(F,G) ) ) ) )
=> ~ ( set_union2(E,singleton(D)) != empty_set
& ! [H] :
~ ( in(H,set_union2(E,singleton(D)))
& ! [I] :
( in(I,set_union2(E,singleton(D)))
=> subset(H,I) ) ) ) ) )
=> ~ ( A != empty_set
& ! [J] :
~ ( in(J,A)
& ! [K] :
( in(K,A)
=> subset(J,K) ) ) ) ) ).
fof(symmetry_r3_xboole_0,axiom,
! [A,B] :
( inclusion_comparable(A,B)
=> inclusion_comparable(B,A) ) ).
fof(t1_boole,axiom,
! [A] : set_union2(A,empty_set) = A ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t1_xboole_1,axiom,
! [A,B,C] :
( ( subset(A,B)
& subset(B,C) )
=> subset(A,C) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t30_finset_1,conjecture,
! [A] :
~ ( finite(A)
& A != empty_set
& inclusion_linear(A)
& ! [B] :
~ ( in(B,A)
& ! [C] :
( in(C,A)
=> subset(B,C) ) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------