TPTP Problem File: SEU098+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU098+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Finite sets, theorem 29
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Dar90] Darmochwal (1990), Finite Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : finset_1__t29_finset_1 [Urb06]
% Status : Theorem
% Rating : 0.42 v9.0.0, 0.47 v7.5.0, 0.50 v7.4.0, 0.33 v7.3.0, 0.45 v7.1.0, 0.43 v7.0.0, 0.40 v6.4.0, 0.46 v6.2.0, 0.52 v6.1.0, 0.60 v6.0.0, 0.52 v5.5.0, 0.67 v5.4.0, 0.68 v5.3.0, 0.70 v5.2.0, 0.60 v5.1.0, 0.62 v4.1.0, 0.61 v4.0.0, 0.62 v3.7.0, 0.55 v3.5.0, 0.58 v3.4.0, 0.63 v3.3.0, 0.57 v3.2.0
% Syntax : Number of formulae : 80 ( 10 unt; 0 def)
% Number of atoms : 250 ( 5 equ)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 196 ( 26 ~; 1 |; 122 &)
% ( 3 <=>; 44 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 23 ( 22 usr; 0 prp; 1-3 aty)
% Number of functors : 10 ( 10 usr; 2 con; 0-4 aty)
% Number of variables : 119 ( 90 !; 29 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_arytm_3,axiom,
! [A] :
( ordinal(A)
=> ! [B] :
( element(B,A)
=> ( epsilon_transitive(B)
& epsilon_connected(B)
& ordinal(B) ) ) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( empty(A)
=> finite(A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( element(C,powerset(cartesian_product2(A,B)))
=> relation(C) ) ).
fof(cc2_arytm_3,axiom,
! [A] :
( ( empty(A)
& ordinal(A) )
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& natural(A) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( finite(A)
=> ! [B] :
( element(B,powerset(A))
=> finite(B) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(cc4_arytm_3,axiom,
! [A] :
( element(A,positive_rationals)
=> ( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& natural(A) ) ) ) ).
fof(dt_k2_funct_2,axiom,
! [A,B,C,D] :
( ( function(C)
& quasi_total(C,A,B)
& relation_of2(C,A,B) )
=> element(function_image(A,B,C,D),powerset(B)) ) ).
fof(dt_k7_funct_3,axiom,
! [A,B] :
( relation(first_projection(A,B))
& function(first_projection(A,B)) ) ).
fof(dt_k9_funct_3,axiom,
! [A,B] :
( function(first_projection_as_func_of(A,B))
& quasi_total(first_projection_as_func_of(A,B),cartesian_product2(A,B),A)
& relation_of2_as_subset(first_projection_as_func_of(A,B),cartesian_product2(A,B),A) ) ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
=> element(C,powerset(cartesian_product2(A,B))) ) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : relation_of2(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : relation_of2_as_subset(C,A,B) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc13_finset_1,axiom,
! [A,B] :
( ( relation(A)
& function(A)
& finite(B) )
=> finite(relation_image(A,B)) ) ).
fof(fc14_finset_1,axiom,
! [A,B] :
( ( finite(A)
& finite(B) )
=> finite(cartesian_product2(A,B)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_ordinal1,axiom,
( relation(empty_set)
& relation_empty_yielding(empty_set)
& function(empty_set)
& one_to_one(empty_set)
& empty(empty_set)
& epsilon_transitive(empty_set)
& epsilon_connected(empty_set)
& ordinal(empty_set) ) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ empty(A)
& ~ empty(B) )
=> ~ empty(cartesian_product2(A,B)) ) ).
fof(fc5_ordinal1,axiom,
! [A] :
( ( relation(A)
& function(A)
& transfinite_sequence(A) )
=> ( epsilon_transitive(relation_dom(A))
& epsilon_connected(relation_dom(A))
& ordinal(relation_dom(A)) ) ) ).
fof(fc5_relat_1,axiom,
! [A] :
( ( ~ empty(A)
& relation(A) )
=> ~ empty(relation_dom(A)) ) ).
fof(fc6_funct_1,axiom,
! [A] :
( ( relation(A)
& relation_non_empty(A)
& function(A) )
=> with_non_empty_elements(relation_rng(A)) ) ).
fof(fc6_relat_1,axiom,
! [A] :
( ( ~ empty(A)
& relation(A) )
=> ~ empty(relation_rng(A)) ) ).
fof(fc7_relat_1,axiom,
! [A] :
( empty(A)
=> ( empty(relation_dom(A))
& relation(relation_dom(A)) ) ) ).
fof(fc8_arytm_3,axiom,
~ empty(positive_rationals) ).
fof(fc8_relat_1,axiom,
! [A] :
( empty(A)
=> ( empty(relation_rng(A))
& relation(relation_rng(A)) ) ) ).
fof(rc1_arytm_3,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& natural(A) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ empty(A)
& finite(A) ) ).
fof(rc1_funcop_1,axiom,
? [A] :
( relation(A)
& function(A)
& function_yielding(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc1_ordinal2,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& being_limit_ordinal(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_arytm_3,axiom,
? [A] :
( element(A,positive_rationals)
& ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_finset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B)
& relation(B)
& function(B)
& one_to_one(B)
& epsilon_transitive(B)
& epsilon_connected(B)
& ordinal(B)
& natural(B)
& finite(B) ) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_ordinal2,axiom,
? [A] :
( relation(A)
& function(A)
& transfinite_sequence(A)
& ordinal_yielding(A) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_arytm_3,axiom,
? [A] :
( element(A,positive_rationals)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& natural(A) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B)
& finite(B) ) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B)
& finite(B) ) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A)
& function(A) ) ).
fof(rc4_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& transfinite_sequence(A) ) ).
fof(rc5_funct_1,axiom,
? [A] :
( relation(A)
& relation_non_empty(A)
& function(A) ) ).
fof(redefinition_k2_funct_2,axiom,
! [A,B,C,D] :
( ( function(C)
& quasi_total(C,A,B)
& relation_of2(C,A,B) )
=> function_image(A,B,C,D) = relation_image(C,D) ) ).
fof(redefinition_k9_funct_3,axiom,
! [A,B] : first_projection_as_func_of(A,B) = first_projection(A,B) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
<=> relation_of2(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t100_funct_3,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> function_image(cartesian_product2(relation_dom(A),relation_rng(A)),relation_dom(A),first_projection_as_func_of(relation_dom(A),relation_rng(A)),A) = relation_dom(A) ) ).
fof(t13_finset_1,axiom,
! [A,B] :
( ( subset(A,B)
& finite(B) )
=> finite(A) ) ).
fof(t17_finset_1,axiom,
! [A,B] :
( ( relation(B)
& function(B) )
=> ( finite(A)
=> finite(relation_image(B,A)) ) ) ).
fof(t19_finset_1,axiom,
! [A,B] :
( ( finite(A)
& finite(B) )
=> finite(cartesian_product2(A,B)) ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t21_relat_1,axiom,
! [A] :
( relation(A)
=> subset(A,cartesian_product2(relation_dom(A),relation_rng(A))) ) ).
fof(t26_finset_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ( finite(relation_dom(A))
=> finite(relation_rng(A)) ) ) ).
fof(t29_finset_1,conjecture,
! [A] :
( ( relation(A)
& function(A) )
=> ( finite(relation_dom(A))
<=> finite(A) ) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------