TPTP Problem File: SET969+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SET969+1 : TPTP v9.0.0. Released v3.2.0.
% Domain   : Set theory
% Problem  : Basic properties of sets, theorem 122
% Version  : [Urb06] axioms : Especial.
% English  :

% Refs     : [Byl90] Bylinski (1990), Some Basic Properties of Sets
%          : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb06]
% Names    : zfmisc_1__t122_zfmisc_1 [Urb06]

% Status   : Theorem
% Rating   : 0.82 v9.0.0, 0.83 v8.2.0, 0.86 v7.5.0, 0.88 v7.4.0, 0.83 v7.3.0, 0.72 v7.2.0, 0.69 v7.1.0, 0.74 v7.0.0, 0.83 v6.4.0, 0.88 v6.3.0, 0.92 v6.1.0, 0.93 v6.0.0, 0.96 v5.5.0, 0.89 v5.2.0, 0.85 v5.1.0, 0.86 v5.0.0, 0.88 v4.1.0, 0.83 v3.7.0, 0.80 v3.5.0, 0.84 v3.4.0, 1.00 v3.2.0
% Syntax   : Number of formulae    :   15 (   9 unt;   0 def)
%            Number of atoms       :   27 (   8 equ)
%            Maximal formula atoms :    5 (   1 avg)
%            Number of connectives :   15 (   3   ~;   0   |;   5   &)
%                                         (   4 <=>;   3  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   13 (   5 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    4 (   3 usr;   0 prp; 1-2 aty)
%            Number of functors    :    5 (   5 usr;   0 con; 1-2 aty)
%            Number of variables   :   41 (  39   !;   2   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(commutativity_k2_tarski,axiom,
    ! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).

fof(commutativity_k3_xboole_0,axiom,
    ! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).

fof(d3_xboole_0,axiom,
    ! [A,B,C] :
      ( C = set_intersection2(A,B)
    <=> ! [D] :
          ( in(D,C)
        <=> ( in(D,A)
            & in(D,B) ) ) ) ).

fof(d5_tarski,axiom,
    ! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).

fof(fc1_zfmisc_1,axiom,
    ! [A,B] : ~ empty(ordered_pair(A,B)) ).

fof(idempotence_k3_xboole_0,axiom,
    ! [A,B] : set_intersection2(A,A) = A ).

fof(l55_zfmisc_1,axiom,
    ! [A,B,C,D] :
      ( in(ordered_pair(A,B),cartesian_product2(C,D))
    <=> ( in(A,C)
        & in(B,D) ) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : empty(A) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ empty(A) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(t107_zfmisc_1,axiom,
    ! [A,B,C,D] :
      ( in(ordered_pair(A,B),cartesian_product2(C,D))
     => in(ordered_pair(B,A),cartesian_product2(D,C)) ) ).

fof(t110_zfmisc_1,axiom,
    ! [A,B,C,D,E,F] :
      ( ( subset(A,cartesian_product2(B,C))
        & subset(D,cartesian_product2(E,F))
        & ! [G,H] :
            ( in(ordered_pair(G,H),A)
          <=> in(ordered_pair(G,H),D) ) )
     => A = D ) ).

fof(t122_zfmisc_1,conjecture,
    ! [A,B,C] :
      ( cartesian_product2(set_intersection2(A,B),C) = set_intersection2(cartesian_product2(A,C),cartesian_product2(B,C))
      & cartesian_product2(C,set_intersection2(A,B)) = set_intersection2(cartesian_product2(C,A),cartesian_product2(C,B)) ) ).

fof(t17_xboole_1,axiom,
    ! [A,B] : subset(set_intersection2(A,B),A) ).

%------------------------------------------------------------------------------