TPTP Problem File: SET969+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET969+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Basic properties of sets, theorem 122
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t122_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.82 v9.0.0, 0.83 v8.2.0, 0.86 v7.5.0, 0.88 v7.4.0, 0.83 v7.3.0, 0.72 v7.2.0, 0.69 v7.1.0, 0.74 v7.0.0, 0.83 v6.4.0, 0.88 v6.3.0, 0.92 v6.1.0, 0.93 v6.0.0, 0.96 v5.5.0, 0.89 v5.2.0, 0.85 v5.1.0, 0.86 v5.0.0, 0.88 v4.1.0, 0.83 v3.7.0, 0.80 v3.5.0, 0.84 v3.4.0, 1.00 v3.2.0
% Syntax : Number of formulae : 15 ( 9 unt; 0 def)
% Number of atoms : 27 ( 8 equ)
% Maximal formula atoms : 5 ( 1 avg)
% Number of connectives : 15 ( 3 ~; 0 |; 5 &)
% ( 4 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 0 con; 1-2 aty)
% Number of variables : 41 ( 39 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = set_intersection2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& in(D,B) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(l55_zfmisc_1,axiom,
! [A,B,C,D] :
( in(ordered_pair(A,B),cartesian_product2(C,D))
<=> ( in(A,C)
& in(B,D) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t107_zfmisc_1,axiom,
! [A,B,C,D] :
( in(ordered_pair(A,B),cartesian_product2(C,D))
=> in(ordered_pair(B,A),cartesian_product2(D,C)) ) ).
fof(t110_zfmisc_1,axiom,
! [A,B,C,D,E,F] :
( ( subset(A,cartesian_product2(B,C))
& subset(D,cartesian_product2(E,F))
& ! [G,H] :
( in(ordered_pair(G,H),A)
<=> in(ordered_pair(G,H),D) ) )
=> A = D ) ).
fof(t122_zfmisc_1,conjecture,
! [A,B,C] :
( cartesian_product2(set_intersection2(A,B),C) = set_intersection2(cartesian_product2(A,C),cartesian_product2(B,C))
& cartesian_product2(C,set_intersection2(A,B)) = set_intersection2(cartesian_product2(C,A),cartesian_product2(C,B)) ) ).
fof(t17_xboole_1,axiom,
! [A,B] : subset(set_intersection2(A,B),A) ).
%------------------------------------------------------------------------------