TPTP Problem File: SET926^8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET926^8 : TPTP v9.0.0. Released v8.1.0.
% Domain : Set Theory
% Problem : TPTP problem SET926+1.p with axiomatized equality
% Version : [BP13] axioms.
% English :
% Refs : [RO12] Raths & Otten (2012), The QMLTP Problem Library for Fi
% : [BP13] Benzmueller & Paulson (2013), Quantified Multimodal Lo
% : [Ste22] Steen (2022), An Extensible Logic Embedding Tool for L
% Source : [TPTP]
% Names : SET926+1 [QMLTP]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0
% Syntax : Number of formulae : 48 ( 12 unt; 20 typ; 10 def)
% Number of atoms : 125 ( 10 equ; 0 cnn)
% Maximal formula atoms : 9 ( 4 avg)
% Number of connectives : 203 ( 1 ~; 1 |; 3 &; 194 @)
% ( 1 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 7 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 70 ( 70 >; 0 *; 0 +; 0 <<)
% Number of symbols : 20 ( 19 usr; 2 con; 0-3 aty)
% Number of variables : 62 ( 55 ^; 4 !; 3 ?; 62 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This output was generated by embedproblem, version 1.7.1 (library
% version 1.3). Generated on Thu Apr 28 13:18:18 EDT 2022 using
% 'modal' embedding, version 1.5.2. Logic specification used:
% $modal == [$constants == $rigid,$quantification == $varying,
% $modalities == $modal_system_T].
%------------------------------------------------------------------------------
thf(mworld,type,
mworld: $tType ).
thf(mrel_type,type,
mrel: mworld > mworld > $o ).
thf(mactual_type,type,
mactual: mworld ).
thf(mlocal_type,type,
mlocal: ( mworld > $o ) > $o ).
thf(mlocal_def,definition,
( mlocal
= ( ^ [Phi: mworld > $o] : ( Phi @ mactual ) ) ) ).
thf(mnot_type,type,
mnot: ( mworld > $o ) > mworld > $o ).
thf(mand_type,type,
mand: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mor_type,type,
mor: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mimplies_type,type,
mimplies: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mequiv_type,type,
mequiv: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mnot_def,definition,
( mnot
= ( ^ [A: mworld > $o,W: mworld] :
~ ( A @ W ) ) ) ).
thf(mand_def,definition,
( mand
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
& ( B @ W ) ) ) ) ).
thf(mor_def,definition,
( mor
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
| ( B @ W ) ) ) ) ).
thf(mimplies_def,definition,
( mimplies
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
=> ( B @ W ) ) ) ) ).
thf(mequiv_def,definition,
( mequiv
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
<=> ( B @ W ) ) ) ) ).
thf(mbox_type,type,
mbox: ( mworld > $o ) > mworld > $o ).
thf(mbox_def,definition,
( mbox
= ( ^ [Phi: mworld > $o,W: mworld] :
! [V: mworld] :
( ( mrel @ W @ V )
=> ( Phi @ V ) ) ) ) ).
thf(mdia_type,type,
mdia: ( mworld > $o ) > mworld > $o ).
thf(mdia_def,definition,
( mdia
= ( ^ [Phi: mworld > $o,W: mworld] :
? [V: mworld] :
( ( mrel @ W @ V )
& ( Phi @ V ) ) ) ) ).
thf(mrel_reflexive,axiom,
! [W: mworld] : ( mrel @ W @ W ) ).
thf(eiw_di_type,type,
eiw_di: $i > mworld > $o ).
thf(eiw_di_nonempty,axiom,
! [W: mworld] :
? [X: $i] : ( eiw_di @ X @ W ) ).
thf(mforall_di_type,type,
mforall_di: ( $i > mworld > $o ) > mworld > $o ).
thf(mforall_di_def,definition,
( mforall_di
= ( ^ [A: $i > mworld > $o,W: mworld] :
! [X: $i] :
( ( eiw_di @ X @ W )
=> ( A @ X @ W ) ) ) ) ).
thf(mexists_di_type,type,
mexists_di: ( $i > mworld > $o ) > mworld > $o ).
thf(mexists_di_def,definition,
( mexists_di
= ( ^ [A: $i > mworld > $o,W: mworld] :
? [X: $i] :
( ( eiw_di @ X @ W )
& ( A @ X @ W ) ) ) ) ).
thf(empty_set_decl,type,
empty_set: $i ).
thf(qmltpeq_decl,type,
qmltpeq: $i > $i > mworld > $o ).
thf(in_decl,type,
in: $i > $i > mworld > $o ).
thf(empty_decl,type,
empty: $i > mworld > $o ).
thf(singleton_decl,type,
singleton: $i > $i ).
thf(set_difference_decl,type,
set_difference: $i > $i > $i ).
thf(reflexivity,axiom,
( mlocal
@ ( mforall_di
@ ^ [X: $i] : ( qmltpeq @ X @ X ) ) ) ).
thf(symmetry,axiom,
( mlocal
@ ( mforall_di
@ ^ [X: $i] :
( mforall_di
@ ^ [Y: $i] : ( mimplies @ ( qmltpeq @ X @ Y ) @ ( qmltpeq @ Y @ X ) ) ) ) ) ).
thf(transitivity,axiom,
( mlocal
@ ( mforall_di
@ ^ [X: $i] :
( mforall_di
@ ^ [Y: $i] :
( mforall_di
@ ^ [Z: $i] : ( mimplies @ ( mand @ ( qmltpeq @ X @ Y ) @ ( qmltpeq @ Y @ Z ) ) @ ( qmltpeq @ X @ Z ) ) ) ) ) ) ).
thf(set_difference_substitution_1,axiom,
( mlocal
@ ( mforall_di
@ ^ [A: $i] :
( mforall_di
@ ^ [B: $i] :
( mforall_di
@ ^ [C: $i] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( set_difference @ A @ C ) @ ( set_difference @ B @ C ) ) ) ) ) ) ) ).
thf(set_difference_substitution_2,axiom,
( mlocal
@ ( mforall_di
@ ^ [A: $i] :
( mforall_di
@ ^ [B: $i] :
( mforall_di
@ ^ [C: $i] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( set_difference @ C @ A ) @ ( set_difference @ C @ B ) ) ) ) ) ) ) ).
thf(singleton_substitution_1,axiom,
( mlocal
@ ( mforall_di
@ ^ [A: $i] :
( mforall_di
@ ^ [B: $i] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( singleton @ A ) @ ( singleton @ B ) ) ) ) ) ) ).
thf(empty_substitution_1,axiom,
( mlocal
@ ( mforall_di
@ ^ [A: $i] :
( mforall_di
@ ^ [B: $i] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( empty @ A ) ) @ ( empty @ B ) ) ) ) ) ).
thf(in_substitution_1,axiom,
( mlocal
@ ( mforall_di
@ ^ [A: $i] :
( mforall_di
@ ^ [B: $i] :
( mforall_di
@ ^ [C: $i] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( in @ A @ C ) ) @ ( in @ B @ C ) ) ) ) ) ) ).
thf(in_substitution_2,axiom,
( mlocal
@ ( mforall_di
@ ^ [A: $i] :
( mforall_di
@ ^ [B: $i] :
( mforall_di
@ ^ [C: $i] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( in @ C @ A ) ) @ ( in @ C @ B ) ) ) ) ) ) ).
thf(antisymmetry_r2_hidden,axiom,
( mlocal
@ ( mforall_di
@ ^ [A: $i] :
( mforall_di
@ ^ [B: $i] : ( mimplies @ ( in @ A @ B ) @ ( mnot @ ( in @ B @ A ) ) ) ) ) ) ).
thf(fc1_xboole_0,axiom,
mlocal @ ( empty @ empty_set ) ).
thf(l34_zfmisc_1,axiom,
( mlocal
@ ( mforall_di
@ ^ [A: $i] :
( mforall_di
@ ^ [B: $i] : ( mequiv @ ( qmltpeq @ ( set_difference @ ( singleton @ A ) @ B ) @ ( singleton @ A ) ) @ ( mnot @ ( in @ A @ B ) ) ) ) ) ) ).
thf(l36_zfmisc_1,axiom,
( mlocal
@ ( mforall_di
@ ^ [A: $i] :
( mforall_di
@ ^ [B: $i] : ( mequiv @ ( qmltpeq @ ( set_difference @ ( singleton @ A ) @ B ) @ empty_set ) @ ( in @ A @ B ) ) ) ) ) ).
thf(rc1_xboole_0,axiom,
( mlocal
@ ( mexists_di
@ ^ [A: $i] : ( empty @ A ) ) ) ).
thf(rc2_xboole_0,axiom,
( mlocal
@ ( mexists_di
@ ^ [A: $i] : ( mnot @ ( empty @ A ) ) ) ) ).
thf(t69_zfmisc_1,conjecture,
( mlocal
@ ( mforall_di
@ ^ [A: $i] :
( mforall_di
@ ^ [B: $i] : ( mor @ ( qmltpeq @ ( set_difference @ ( singleton @ A ) @ B ) @ empty_set ) @ ( qmltpeq @ ( set_difference @ ( singleton @ A ) @ B ) @ ( singleton @ A ) ) ) ) ) ) ).
%------------------------------------------------------------------------------