TPTP Problem File: SET801+4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET801+4 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory (Order relations)
% Problem : M is the greatest element iff it is a member and a LUB
% Version : [Pas05] axioms.
% English :
% Refs : [Pas05] Pastre (2005), Email to G. Sutcliffe
% Source : [Pas05]
% Names :
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.39 v8.2.0, 0.42 v8.1.0, 0.36 v7.5.0, 0.38 v7.4.0, 0.33 v7.3.0, 0.31 v7.2.0, 0.28 v7.1.0, 0.30 v7.0.0, 0.40 v6.4.0, 0.42 v6.2.0, 0.40 v6.1.0, 0.50 v6.0.0, 0.52 v5.5.0, 0.59 v5.4.0, 0.68 v5.3.0, 0.70 v5.2.0, 0.55 v5.1.0, 0.57 v5.0.0, 0.58 v4.1.0, 0.57 v4.0.1, 0.52 v4.0.0, 0.54 v3.7.0, 0.55 v3.5.0, 0.58 v3.4.0, 0.68 v3.3.0, 0.79 v3.2.0
% Syntax : Number of formulae : 22 ( 1 unt; 0 def)
% Number of atoms : 90 ( 6 equ)
% Maximal formula atoms : 14 ( 4 avg)
% Number of connectives : 70 ( 2 ~; 3 |; 26 &)
% ( 21 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 15 ( 14 usr; 0 prp; 2-4 aty)
% Number of functors : 9 ( 9 usr; 1 con; 0-2 aty)
% Number of variables : 78 ( 77 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include set theory definitions
include('Axioms/SET006+0.ax').
%----Include order relation axioms
include('Axioms/SET006+3.ax').
%------------------------------------------------------------------------------
fof(thIV13,conjecture,
! [R,E] :
( order(R,E)
=> ! [X] :
( subset(X,E)
=> ! [M] :
( greatest(M,R,X)
<=> ( member(M,X)
& least_upper_bound(M,X,R,E) ) ) ) ) ).
%------------------------------------------------------------------------------