TPTP Problem File: SET741^4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET741^4 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory
% Problem : Problem on composition of mappings 6
% Version : [BS+08] axioms.
% English : Consider three mappings F from A to B,G from B to C,H from C to A. % If HoGoF is injective and FoHoG and GoFoH surjective, then H is
% one-to-one.
% Refs : [BS+05] Benzmueller et al. (2005), Can a Higher-Order and a Fi
% : [BS+08] Benzmueller et al. (2008), Combined Reasoning by Autom
% : [Ben08] Benzmueller (2008), Email to Geoff Sutcliffe
% Source : [Ben08]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.80 v5.1.0, 1.00 v5.0.0, 0.80 v4.1.0, 0.67 v3.7.0
% Syntax : Number of formulae : 17 ( 8 unt; 8 typ; 8 def)
% Number of atoms : 33 ( 13 equ; 0 cnn)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 48 ( 0 ~; 0 |; 5 &; 39 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 49 ( 49 >; 0 *; 0 +; 0 <<)
% Number of symbols : 13 ( 12 usr; 4 con; 0-3 aty)
% Number of variables : 29 ( 16 ^; 10 !; 3 ?; 29 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include definitions for functions
include('Axioms/SET008^1.ax').
%------------------------------------------------------------------------------
thf(thm,conjecture,
! [F: $i > $i,G: $i > $i,H: $i > $i] :
( ( ( fun_injective @ ( fun_composition @ ( fun_composition @ F @ G ) @ H ) )
& ( fun_surjective @ ( fun_composition @ ( fun_composition @ G @ H ) @ F ) )
& ( fun_surjective @ ( fun_composition @ ( fun_composition @ H @ F ) @ G ) ) )
=> ( fun_bijective @ H ) ) ).
%------------------------------------------------------------------------------