TPTP Problem File: SET683+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET683+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory (Relations)
% Problem : !y in E : y in range of R (X to Y) ?x in D : x in domain of R
% Version : [Wor90] axioms : Reduced > Incomplete.
% English : For every element y in E such that y is in the range in a relation
% R from X to Y there exists an element x in D such that x is in the
% domain of R.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Wor90] Woronowicz (1990), Relations Defined on Sets
% Source : [ILF]
% Names : RELSET_1 (50) [Wor90]
% Status : Theorem
% Rating : 0.33 v9.0.0, 0.36 v8.2.0, 0.39 v7.5.0, 0.38 v7.4.0, 0.33 v7.3.0, 0.41 v7.2.0, 0.38 v7.1.0, 0.35 v7.0.0, 0.30 v6.4.0, 0.35 v6.3.0, 0.38 v6.2.0, 0.40 v6.1.0, 0.37 v6.0.0, 0.35 v5.5.0, 0.30 v5.4.0, 0.32 v5.3.0, 0.37 v5.2.0, 0.20 v5.1.0, 0.19 v5.0.0, 0.33 v4.1.0, 0.35 v4.0.0, 0.33 v3.7.0, 0.30 v3.5.0, 0.26 v3.4.0, 0.32 v3.3.0, 0.21 v3.2.0, 0.18 v3.1.0, 0.22 v2.7.0, 0.50 v2.6.0, 0.29 v2.5.0, 0.25 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 25 ( 2 unt; 0 def)
% Number of atoms : 96 ( 3 equ)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 77 ( 6 ~; 0 |; 12 &)
% ( 6 <=>; 53 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 12 ( 12 usr; 2 con; 0-3 aty)
% Number of variables : 58 ( 50 !; 8 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%---- line(relat_1 - th(19),1917985)
fof(p1,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,binary_relation_type)
=> ( member(B,range_of(C))
=> ? [D] :
( ilf_type(D,set_type)
& member(D,domain_of(C)) ) ) ) ) ).
%---- line(relset_1 - df(1),1916080)
fof(p2,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( ! [D] :
( ilf_type(D,subset_type(cross_product(B,C)))
=> ilf_type(D,relation_type(B,C)) )
& ! [E] :
( ilf_type(E,relation_type(B,C))
=> ilf_type(E,subset_type(cross_product(B,C))) ) ) ) ) ).
%---- type_nonempty(line(relset_1 - df(1),1916080))
fof(p3,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ? [D] : ilf_type(D,relation_type(C,B)) ) ) ).
%---- line(hidden - axiom650,1832640)
fof(p4,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ( ~ empty(C)
& ilf_type(C,set_type) )
=> ( ilf_type(B,member_type(C))
<=> member(B,C) ) ) ) ).
%---- type_nonempty(line(hidden - axiom650,1832640))
fof(p5,axiom,
! [B] :
( ( ~ empty(B)
& ilf_type(B,set_type) )
=> ? [C] : ilf_type(C,member_type(B)) ) ).
%---- line(hidden - axiom652,1832628)
fof(p6,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( empty(B)
<=> ! [C] :
( ilf_type(C,set_type)
=> ~ member(C,B) ) ) ) ).
%---- declaration(op(domain_of,1,function))
fof(p7,axiom,
! [B] :
( ilf_type(B,binary_relation_type)
=> ilf_type(domain_of(B),set_type) ) ).
%---- declaration(op(cross_product,2,function))
fof(p8,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ilf_type(cross_product(B,C),set_type) ) ) ).
%---- declaration(op(range_of,1,function))
fof(p9,axiom,
! [B] :
( ilf_type(B,binary_relation_type)
=> ilf_type(range_of(B),set_type) ) ).
%---- line(relat_1 - axiom653,1917641)
fof(p10,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( ilf_type(B,binary_relation_type)
<=> ( relation_like(B)
& ilf_type(B,set_type) ) ) ) ).
%---- type_nonempty(line(relat_1 - axiom653,1917641))
fof(p11,axiom,
? [B] : ilf_type(B,binary_relation_type) ).
%---- line(hidden - axiom654,1832648)
fof(p12,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( ilf_type(C,subset_type(B))
<=> ilf_type(C,member_type(power_set(B))) ) ) ) ).
%---- type_nonempty(line(hidden - axiom654,1832648))
fof(p13,axiom,
! [B] :
( ilf_type(B,set_type)
=> ? [C] : ilf_type(C,subset_type(B)) ) ).
%---- line(hidden - axiom656,1832644)
fof(p14,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( member(B,power_set(C))
<=> ! [D] :
( ilf_type(D,set_type)
=> ( member(D,B)
=> member(D,C) ) ) ) ) ) ).
%---- declaration(line(hidden - axiom656,1832644))
fof(p15,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( ~ empty(power_set(B))
& ilf_type(power_set(B),set_type) ) ) ).
%---- line(relat_1 - df(1),1917627)
fof(p16,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( relation_like(B)
<=> ! [C] :
( ilf_type(C,set_type)
=> ( member(C,B)
=> ? [D] :
( ilf_type(D,set_type)
& ? [E] :
( ilf_type(E,set_type)
& C = ordered_pair(D,E) ) ) ) ) ) ) ).
%---- conditional_cluster(axiom657,relation_like)
fof(p17,axiom,
! [B] :
( ( empty(B)
& ilf_type(B,set_type) )
=> relation_like(B) ) ).
%---- conditional_cluster(axiom658,relation_like)
fof(p18,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,subset_type(cross_product(B,C)))
=> relation_like(D) ) ) ) ).
%---- declaration(op(ordered_pair,2,function))
fof(p19,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ilf_type(ordered_pair(B,C),set_type) ) ) ).
%---- line(relset_1 - axiom662,1916330)
fof(p20,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,relation_type(B,C))
=> domain(B,C,D) = domain_of(D) ) ) ) ).
%---- declaration(line(relset_1 - axiom662,1916330))
fof(p21,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,relation_type(B,C))
=> ilf_type(domain(B,C,D),subset_type(B)) ) ) ) ).
%---- line(relset_1 - axiom663,1916334)
fof(p22,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,relation_type(B,C))
=> range(B,C,D) = range_of(D) ) ) ) ).
%---- declaration(line(relset_1 - axiom663,1916334))
fof(p23,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,relation_type(B,C))
=> ilf_type(range(B,C,D),subset_type(C)) ) ) ) ).
%---- declaration(set)
fof(p24,axiom,
! [B] : ilf_type(B,set_type) ).
%---- line(relset_1 - th(50),1916939)
fof(prove_relset_1_50,conjecture,
! [B] :
( ( ~ empty(B)
& ilf_type(B,set_type) )
=> ! [C] :
( ( ~ empty(C)
& ilf_type(C,set_type) )
=> ! [D] :
( ilf_type(D,relation_type(C,B))
=> ! [E] :
( ilf_type(E,member_type(B))
=> ( member(E,range(C,B,D))
=> ? [F] :
( ilf_type(F,member_type(C))
& member(F,domain(C,B,D)) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------