TPTP Problem File: SET681+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET681+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory (Relations)
% Problem : !y in E, y in range of R (X to Y) iff ?x in D : <x,y> in R
% Version : [Wor90] axioms : Reduced > Incomplete.
% English : For every element y in E, y is in the range of a relation R
% from X to Y iff there exists an element x in D such that <x,y>
% is in R.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Wor90] Woronowicz (1990), Relations Defined on Sets
% Source : [ILF]
% Names : RELSET_1 (48) [Wor90]
% Status : Theorem
% Rating : 0.45 v9.0.0, 0.50 v8.1.0, 0.47 v7.4.0, 0.37 v7.3.0, 0.48 v7.2.0, 0.45 v7.1.0, 0.35 v7.0.0, 0.30 v6.4.0, 0.35 v6.3.0, 0.38 v6.2.0, 0.40 v6.0.0, 0.43 v5.5.0, 0.48 v5.4.0, 0.50 v5.3.0, 0.59 v5.2.0, 0.35 v5.1.0, 0.33 v5.0.0, 0.38 v4.1.0, 0.43 v4.0.0, 0.42 v3.7.0, 0.40 v3.5.0, 0.37 v3.4.0, 0.42 v3.3.0, 0.36 v3.1.0, 0.44 v2.7.0, 0.50 v2.6.0, 0.43 v2.5.0, 0.38 v2.4.0, 0.50 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 32 ( 2 unt; 0 def)
% Number of atoms : 131 ( 7 equ)
% Maximal formula atoms : 9 ( 4 avg)
% Number of connectives : 105 ( 6 ~; 0 |; 14 &)
% ( 11 <=>; 74 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 7 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 14 ( 14 usr; 2 con; 0-3 aty)
% Number of variables : 79 ( 71 !; 8 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(relat_1 - th(17),1917961)
fof(p1,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,binary_relation_type)
=> ( member(B,range_of(C))
<=> ? [D] :
( ilf_type(D,set_type)
& member(ordered_pair(D,B),C) ) ) ) ) ).
%---- line(relat_1 - th(20),1917986)
fof(p2,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,binary_relation_type)
=> ( member(ordered_pair(B,C),D)
=> ( member(B,domain_of(D))
& member(C,range_of(D)) ) ) ) ) ) ).
%---- line(relset_1 - th(7),1916125)
fof(p3,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,set_type)
=> ! [E] :
( ilf_type(E,set_type)
=> ! [F] :
( ilf_type(F,relation_type(B,C))
=> ( member(ordered_pair(D,E),F)
=> ( member(D,B)
& member(E,C) ) ) ) ) ) ) ) ).
%---- line(tarski - df(5),1832760)
fof(p4,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,set_type)
=> ! [E] :
( ilf_type(E,set_type)
=> ! [F] :
( ilf_type(F,set_type)
=> ( F = ordered_pair(D,E)
<=> F = unordered_pair(unordered_pair(D,E),singleton(D)) ) ) ) ) ) ) ).
%---- declaration(line(tarski - df(5),1832760))
fof(p5,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ilf_type(ordered_pair(B,C),set_type) ) ) ).
%---- line(relset_1 - df(1),1916080)
fof(p6,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( ! [D] :
( ilf_type(D,subset_type(cross_product(B,C)))
=> ilf_type(D,relation_type(B,C)) )
& ! [E] :
( ilf_type(E,relation_type(B,C))
=> ilf_type(E,subset_type(cross_product(B,C))) ) ) ) ) ).
%---- type_nonempty(line(relset_1 - df(1),1916080))
fof(p7,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ? [D] : ilf_type(D,relation_type(C,B)) ) ) ).
%---- line(hidden - axiom605,1832640)
fof(p8,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ( ~ empty(C)
& ilf_type(C,set_type) )
=> ( ilf_type(B,member_type(C))
<=> member(B,C) ) ) ) ).
%---- type_nonempty(line(hidden - axiom605,1832640))
fof(p9,axiom,
! [B] :
( ( ~ empty(B)
& ilf_type(B,set_type) )
=> ? [C] : ilf_type(C,member_type(B)) ) ).
%---- line(hidden - axiom607,1832628)
fof(p10,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( empty(B)
<=> ! [C] :
( ilf_type(C,set_type)
=> ~ member(C,B) ) ) ) ).
%---- declaration(op(domain_of,1,function))
fof(p11,axiom,
! [B] :
( ilf_type(B,binary_relation_type)
=> ilf_type(domain_of(B),set_type) ) ).
%---- declaration(op(singleton,1,function))
fof(p12,axiom,
! [B] :
( ilf_type(B,set_type)
=> ilf_type(singleton(B),set_type) ) ).
%---- declaration(op(cross_product,2,function))
fof(p13,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ilf_type(cross_product(B,C),set_type) ) ) ).
%---- declaration(op(range_of,1,function))
fof(p14,axiom,
! [B] :
( ilf_type(B,binary_relation_type)
=> ilf_type(range_of(B),set_type) ) ).
%---- declaration(op(unordered_pair,2,function))
fof(p15,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ilf_type(unordered_pair(B,C),set_type) ) ) ).
%---- property(commutativity,op(unordered_pair,2,function))
fof(p16,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> unordered_pair(B,C) = unordered_pair(C,B) ) ) ).
%---- line(relat_1 - axiom608,1917641)
fof(p17,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( ilf_type(B,binary_relation_type)
<=> ( relation_like(B)
& ilf_type(B,set_type) ) ) ) ).
%---- type_nonempty(line(relat_1 - axiom608,1917641))
fof(p18,axiom,
? [B] : ilf_type(B,binary_relation_type) ).
%---- line(hidden - axiom609,1832648)
fof(p19,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( ilf_type(C,subset_type(B))
<=> ilf_type(C,member_type(power_set(B))) ) ) ) ).
%---- type_nonempty(line(hidden - axiom609,1832648))
fof(p20,axiom,
! [B] :
( ilf_type(B,set_type)
=> ? [C] : ilf_type(C,subset_type(B)) ) ).
%---- line(hidden - axiom610,1832615)
fof(p21,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( B = C
<=> ! [D] :
( ilf_type(D,set_type)
=> ( member(D,B)
<=> member(D,C) ) ) ) ) ) ).
%---- line(hidden - axiom612,1832644)
fof(p22,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( member(B,power_set(C))
<=> ! [D] :
( ilf_type(D,set_type)
=> ( member(D,B)
=> member(D,C) ) ) ) ) ) ).
%---- declaration(line(hidden - axiom612,1832644))
fof(p23,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( ~ empty(power_set(B))
& ilf_type(power_set(B),set_type) ) ) ).
%---- line(relat_1 - df(1),1917627)
fof(p24,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( relation_like(B)
<=> ! [C] :
( ilf_type(C,set_type)
=> ( member(C,B)
=> ? [D] :
( ilf_type(D,set_type)
& ? [E] :
( ilf_type(E,set_type)
& C = ordered_pair(D,E) ) ) ) ) ) ) ).
%---- conditional_cluster(axiom613,relation_like)
fof(p25,axiom,
! [B] :
( ( empty(B)
& ilf_type(B,set_type) )
=> relation_like(B) ) ).
%---- conditional_cluster(axiom614,relation_like)
fof(p26,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,subset_type(cross_product(B,C)))
=> relation_like(D) ) ) ) ).
%---- line(relset_1 - axiom618,1916330)
fof(p27,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,relation_type(B,C))
=> domain(B,C,D) = domain_of(D) ) ) ) ).
%---- declaration(line(relset_1 - axiom618,1916330))
fof(p28,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,relation_type(B,C))
=> ilf_type(domain(B,C,D),subset_type(B)) ) ) ) ).
%---- line(relset_1 - axiom619,1916334)
fof(p29,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,relation_type(B,C))
=> range(B,C,D) = range_of(D) ) ) ) ).
%---- declaration(line(relset_1 - axiom619,1916334))
fof(p30,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,relation_type(B,C))
=> ilf_type(range(B,C,D),subset_type(C)) ) ) ) ).
%---- declaration(set)
fof(p31,axiom,
! [B] : ilf_type(B,set_type) ).
%---- line(relset_1 - th(48),1916905)
fof(prove_relset_1_48,conjecture,
! [B] :
( ( ~ empty(B)
& ilf_type(B,set_type) )
=> ! [C] :
( ( ~ empty(C)
& ilf_type(C,set_type) )
=> ! [D] :
( ilf_type(D,relation_type(C,B))
=> ! [E] :
( ilf_type(E,member_type(B))
=> ( member(E,range(C,B,D))
<=> ? [F] :
( ilf_type(F,member_type(C))
& member(ordered_pair(F,E),D) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------