TPTP Problem File: SET673^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET673^3 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory
% Problem : Y a subset of Y1 => Y1 restricted to R (X to Y) is R
% Version : [BS+08] axioms.
% English : If Y is a subset of Y1 then Y1 restricted to a relation R from
% X to Y is R.
% Refs : [BS+05] Benzmueller et al. (2005), Can a Higher-Order and a Fi
% : [BS+08] Benzmueller et al. (2008), Combined Reasoning by Autom
% : [Ben08] Benzmueller (2008), Email to Geoff Sutcliffe
% Source : [Ben08]
% Names :
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v3.7.0
% Syntax : Number of formulae : 71 ( 35 unt; 35 typ; 35 def)
% Number of atoms : 90 ( 44 equ; 0 cnn)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 133 ( 8 ~; 5 |; 19 &; 90 @)
% ( 1 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 217 ( 217 >; 0 *; 0 +; 0 <<)
% Number of symbols : 40 ( 38 usr; 4 con; 0-4 aty)
% Number of variables : 111 ( 80 ^; 23 !; 8 ?; 111 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include basic set theory definitions
include('Axioms/SET008^0.ax').
%----Include definitions for relations
include('Axioms/SET008^2.ax').
%------------------------------------------------------------------------------
thf(thm,conjecture,
! [Z: $i > $o,R: $i > $i > $o,X: $i > $o,Y: $i > $o] :
( ( ( is_rel_on @ R @ X @ Y )
& ( subset @ Y @ Z ) )
=> ( ( restrict_rel_codomain @ R @ Z )
= R ) ) ).
%------------------------------------------------------------------------------