TPTP Problem File: SET655+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET655+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory (Relations)
% Problem : X a subset of X1 & Y a subset of Y1 => R (X to Y) is (X1 to Y1)
% Version : [Wor90] axioms : Reduced > Incomplete.
% English : If X is a subset of X1 and Y is a subset of Y1 then a relation
% R from X to Y is a relation from X1 to Y1.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Wor90] Woronowicz (1990), Relations Defined on Sets
% Source : [ILF]
% Names : RELSET_1 (17) [Wor90]
% Status : Theorem
% Rating : 0.48 v9.0.0, 0.44 v8.2.0, 0.47 v8.1.0, 0.50 v7.4.0, 0.47 v7.3.0, 0.41 v7.2.0, 0.38 v7.1.0, 0.39 v7.0.0, 0.50 v6.4.0, 0.46 v6.2.0, 0.48 v6.1.0, 0.53 v6.0.0, 0.61 v5.5.0, 0.63 v5.4.0, 0.64 v5.3.0, 0.59 v5.2.0, 0.50 v5.1.0, 0.52 v5.0.0, 0.50 v4.1.0, 0.52 v4.0.0, 0.50 v3.7.0, 0.45 v3.5.0, 0.47 v3.4.0, 0.37 v3.3.0, 0.29 v3.2.0, 0.36 v3.1.0, 0.22 v2.7.0, 0.33 v2.6.0, 0.29 v2.5.0, 0.38 v2.4.0, 0.50 v2.3.0, 0.67 v2.2.1
% Syntax : Number of formulae : 20 ( 1 unt; 0 def)
% Number of atoms : 86 ( 1 equ)
% Maximal formula atoms : 8 ( 4 avg)
% Number of connectives : 70 ( 4 ~; 0 |; 10 &)
% ( 6 <=>; 50 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 7 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 7 ( 7 usr; 1 con; 0-2 aty)
% Number of variables : 50 ( 45 !; 5 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - th(29),1909428)
fof(p1,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,set_type)
=> ( ( subset(B,C)
& subset(C,D) )
=> subset(B,D) ) ) ) ) ).
%---- line(zfmisc_1 - th(119),1905457)
fof(p2,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,set_type)
=> ! [E] :
( ilf_type(E,set_type)
=> ( ( subset(B,C)
& subset(D,E) )
=> subset(cross_product(B,D),cross_product(C,E)) ) ) ) ) ) ).
%---- line(relset_1 - df(1),1916080)
fof(p3,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( ! [D] :
( ilf_type(D,subset_type(cross_product(B,C)))
=> ilf_type(D,relation_type(B,C)) )
& ! [E] :
( ilf_type(E,relation_type(B,C))
=> ilf_type(E,subset_type(cross_product(B,C))) ) ) ) ) ).
%---- type_nonempty(line(relset_1 - df(1),1916080))
fof(p4,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ? [D] : ilf_type(D,relation_type(C,B)) ) ) ).
%---- line(tarski - df(3),1832749)
fof(p5,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( subset(B,C)
<=> ! [D] :
( ilf_type(D,set_type)
=> ( member(D,B)
=> member(D,C) ) ) ) ) ) ).
%---- declaration(op(cross_product,2,function))
fof(p6,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ilf_type(cross_product(B,C),set_type) ) ) ).
%---- line(hidden - axiom131,1832648)
fof(p7,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( ilf_type(C,subset_type(B))
<=> ilf_type(C,member_type(power_set(B))) ) ) ) ).
%---- type_nonempty(line(hidden - axiom131,1832648))
fof(p8,axiom,
! [B] :
( ilf_type(B,set_type)
=> ? [C] : ilf_type(C,subset_type(B)) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(p9,axiom,
! [B] :
( ilf_type(B,set_type)
=> subset(B,B) ) ).
%---- line(hidden - axiom133,1832644)
fof(p10,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ( member(B,power_set(C))
<=> ! [D] :
( ilf_type(D,set_type)
=> ( member(D,B)
=> member(D,C) ) ) ) ) ) ).
%---- declaration(line(hidden - axiom133,1832644))
fof(p11,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( ~ empty(power_set(B))
& ilf_type(power_set(B),set_type) ) ) ).
%---- line(hidden - axiom134,1832640)
fof(p12,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ( ~ empty(C)
& ilf_type(C,set_type) )
=> ( ilf_type(B,member_type(C))
<=> member(B,C) ) ) ) ).
%---- type_nonempty(line(hidden - axiom134,1832640))
fof(p13,axiom,
! [B] :
( ( ~ empty(B)
& ilf_type(B,set_type) )
=> ? [C] : ilf_type(C,member_type(B)) ) ).
%---- line(hidden - axiom135,1832628)
fof(p14,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( empty(B)
<=> ! [C] :
( ilf_type(C,set_type)
=> ~ member(C,B) ) ) ) ).
%---- line(relat_1 - df(1),1917627)
fof(p15,axiom,
! [B] :
( ilf_type(B,set_type)
=> ( relation_like(B)
<=> ! [C] :
( ilf_type(C,set_type)
=> ( member(C,B)
=> ? [D] :
( ilf_type(D,set_type)
& ? [E] :
( ilf_type(E,set_type)
& C = ordered_pair(D,E) ) ) ) ) ) ) ).
%---- conditional_cluster(axiom137,relation_like)
fof(p16,axiom,
! [B] :
( ( empty(B)
& ilf_type(B,set_type) )
=> relation_like(B) ) ).
%---- conditional_cluster(axiom138,relation_like)
fof(p17,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,subset_type(cross_product(B,C)))
=> relation_like(D) ) ) ) ).
%---- declaration(op(ordered_pair,2,function))
fof(p18,axiom,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ilf_type(ordered_pair(B,C),set_type) ) ) ).
%---- declaration(set)
fof(p19,axiom,
! [B] : ilf_type(B,set_type) ).
%---- line(relset_1 - th(17),1916284)
fof(prove_relset_1_17,conjecture,
! [B] :
( ilf_type(B,set_type)
=> ! [C] :
( ilf_type(C,set_type)
=> ! [D] :
( ilf_type(D,set_type)
=> ! [E] :
( ilf_type(E,set_type)
=> ! [F] :
( ilf_type(F,relation_type(B,D))
=> ( ( subset(B,C)
& subset(D,E) )
=> ilf_type(F,relation_type(C,E)) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------