TPTP Problem File: SET649^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET649^3 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory
% Problem : Domain R a subset of X & range R a subset of Y => R is (X to Y)
% Version : [BS+08] axioms.
% English : If the domain of a relation R from X to Y is a subset of X and
% the range of R is a subset of Y, R is a relation from X to Y.
% Refs : [BS+05] Benzmueller et al. (2005), Can a Higher-Order and a Fi
% : [BS+08] Benzmueller et al. (2008), Combined Reasoning by Autom
% : [Ben08] Benzmueller (2008), Email to Geoff Sutcliffe
% Source : [Ben08]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.09 v7.5.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.33 v3.7.0
% Syntax : Number of formulae : 71 ( 35 unt; 35 typ; 35 def)
% Number of atoms : 92 ( 43 equ; 0 cnn)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 136 ( 8 ~; 5 |; 19 &; 93 @)
% ( 1 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 216 ( 216 >; 0 *; 0 +; 0 <<)
% Number of symbols : 42 ( 40 usr; 6 con; 0-4 aty)
% Number of variables : 110 ( 80 ^; 22 !; 8 ?; 110 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include basic set theory definitions
include('Axioms/SET008^0.ax').
%----Include definitions for relations
include('Axioms/SET008^2.ax').
%------------------------------------------------------------------------------
thf(thm,conjecture,
! [R: $i > $i > $o,X: $i > $o,Y: $i > $o] :
( ( ( subset @ ( rel_domain @ R ) @ X )
& ( subset @ ( rel_codomain @ R ) @ Y ) )
=> ( sub_rel @ R @ ( cartesian_product @ X @ Y ) ) ) ).
%------------------------------------------------------------------------------