TPTP Problem File: SET648^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET648^3 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory
% Problem : Range of R (X to Y) a subset of Y => R is (domain of R to Y)
% Version : [BS+08] axioms.
% English : If the range of a relation R from X to Y is a subset of Y, R is
% a relation from the domain of a relation R from X to Y and Y.
% Refs : [BS+05] Benzmueller et al. (2005), Can a Higher-Order and a Fi
% : [BS+08] Benzmueller et al. (2008), Combined Reasoning by Autom
% : [Ben08] Benzmueller (2008), Email to Geoff Sutcliffe
% Source : [Ben08]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.09 v7.5.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 71 ( 35 unt; 35 typ; 35 def)
% Number of atoms : 91 ( 43 equ; 0 cnn)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 133 ( 8 ~; 5 |; 18 &; 91 @)
% ( 1 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 215 ( 215 >; 0 *; 0 +; 0 <<)
% Number of symbols : 42 ( 40 usr; 6 con; 0-4 aty)
% Number of variables : 109 ( 80 ^; 21 !; 8 ?; 109 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include basic set theory definitions
include('Axioms/SET008^0.ax').
%----Include definitions for relations
include('Axioms/SET008^2.ax').
%------------------------------------------------------------------------------
thf(thm,conjecture,
! [R: $i > $i > $o,Y: $i > $o] :
( ( subset @ ( rel_codomain @ R ) @ Y )
=> ( sub_rel @ R @ ( cartesian_product @ ( rel_domain @ R ) @ Y ) ) ) ).
%------------------------------------------------------------------------------