TPTP Problem File: SET640^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET640^3 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory
% Problem : A a subset of R (X to Y) => A a subset of X x Y
% Version : [BS+08] axioms.
% English : If A is a subset of a relation R from X to Y then A is a subset
% of X x Y.
% Refs : [BS+05] Benzmueller et al. (2005), Can a Higher-Order and a Fi
% : [BS+08] Benzmueller et al. (2008), Combined Reasoning by Autom
% : [Ben08] Benzmueller (2008), Email to Geoff Sutcliffe
% Source : [Ben08]
% Names :
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 71 ( 35 unt; 35 typ; 35 def)
% Number of atoms : 91 ( 43 equ; 0 cnn)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 131 ( 8 ~; 5 |; 18 &; 89 @)
% ( 1 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 216 ( 216 >; 0 *; 0 +; 0 <<)
% Number of symbols : 40 ( 37 usr; 4 con; 0-4 aty)
% Number of variables : 111 ( 82 ^; 21 !; 8 ?; 111 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include basic set theory definitions
include('Axioms/SET008^0.ax').
%----Include definitions for relations
include('Axioms/SET008^2.ax').
%------------------------------------------------------------------------------
thf(thm,conjecture,
! [R: $i > $i > $o,Q: $i > $i > $o] :
( ( sub_rel @ R @ Q )
=> ( sub_rel @ R
@ ( cartesian_product
@ ^ [X: $i] : $true
@ ^ [X: $i] : $true ) ) ) ).
%------------------------------------------------------------------------------