TPTP Problem File: SET637+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET637+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : Trybulec's 119th Boolean property of sets
% Version : [Try90] axioms : Reduced > Incomplete.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (119) [TS89]
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.31 v8.2.0, 0.28 v8.1.0, 0.25 v7.5.0, 0.28 v7.4.0, 0.17 v7.2.0, 0.14 v7.1.0, 0.13 v6.4.0, 0.12 v6.3.0, 0.25 v6.2.0, 0.20 v6.1.0, 0.27 v6.0.0, 0.30 v5.5.0, 0.22 v5.4.0, 0.29 v5.3.0, 0.30 v5.2.0, 0.05 v5.0.0, 0.12 v4.1.0, 0.17 v4.0.1, 0.26 v4.0.0, 0.25 v3.7.0, 0.20 v3.5.0, 0.21 v3.4.0, 0.32 v3.3.0, 0.29 v3.2.0, 0.36 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.14 v2.5.0, 0.25 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 9 ( 2 unt; 0 def)
% Number of atoms : 19 ( 3 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 13 ( 3 ~; 0 |; 2 &)
% ( 7 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 20 ( 19 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(3),1833060)
fof(intersection_defn,axiom,
! [B,C,D] :
( member(D,intersection(B,C))
<=> ( member(D,B)
& member(D,C) ) ) ).
%---- line(boole - df(5),1833080)
fof(intersect_defn,axiom,
! [B,C] :
( intersect(B,C)
<=> ? [D] :
( member(D,B)
& member(D,C) ) ) ).
%---- line(hidden - axiom223,1832636)
fof(empty_set_defn,axiom,
! [B] : ~ member(B,empty_set) ).
%---- line(hidden - axiom224,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(hidden - axiom225,1832619)
fof(not_equal_defn,axiom,
! [B,C] :
( not_equal(B,C)
<=> B != C ) ).
%---- property(commutativity,op(intersection,2,function))
fof(commutativity_of_intersection,axiom,
! [B,C] : intersection(B,C) = intersection(C,B) ).
%---- property(symmetry,op(intersect,2,predicate))
fof(symmetry_of_intersect,axiom,
! [B,C] :
( intersect(B,C)
=> intersect(C,B) ) ).
%---- line(hidden - axiom227,1832628)
fof(empty_defn,axiom,
! [B] :
( empty(B)
<=> ! [C] : ~ member(C,B) ) ).
%---- line(boole - th(119),1834490)
fof(prove_th119,conjecture,
! [B,C] :
( intersect(B,C)
<=> not_equal(intersection(B,C),empty_set) ) ).
%--------------------------------------------------------------------------