TPTP Problem File: SET632^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SET632^5 : TPTP v9.0.0. Released v4.0.0.
% Domain   : Set Theory
% Problem  : TPS problem BOOL-PROP-114
% Version  : Especial.
% English  : Trybulec's 114th Boolean property of sets

% Refs     : [TS89]  Trybulec & Swieczkowska (1989), Boolean Properties of
%          : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0315 [Bro09]
%          : BOOL-PROP-114 [TPS]

% Status   : Theorem
% Rating   : 0.12 v9.0.0, 0.20 v8.2.0, 0.23 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax   : Number of formulae    :    2 (   1 unt;   1 typ;   0 def)
%            Number of atoms       :    2 (   1 equ;   0 cnn)
%            Maximal formula atoms :    1 (   2 avg)
%            Number of connectives :   13 (   1   ~;   0   |;   3   &;   6   @)
%                                         (   0 <=>;   3  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   11 (  11 avg)
%            Number of types       :    2 (   1 usr)
%            Number of type conns  :    3 (   3   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    2 (   0 usr;   1 con; 0-2 aty)
%            Number of variables   :    7 (   1   ^;   5   !;   1   ?;   7   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%          : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
    a: $tType ).

thf(cBOOL_PROP_114_pme,conjecture,
    ! [X: a > $o,Y: a > $o,Z: a > $o] :
      ( ( ! [Xx: a] :
            ( ( X @ Xx )
           => ( Y @ Xx ) )
        & ! [Xx: a] :
            ( ( X @ Xx )
           => ( Z @ Xx ) )
        & ~ ? [Xx: a] :
              ( ( Y @ Xx )
              & ( Z @ Xx ) ) )
     => ( X
        = ( ^ [Xx: a] : $false ) ) ) ).

%------------------------------------------------------------------------------