TPTP Problem File: SET624+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET624+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : X intersects Y U Z iff X intersects Y or X intersects Z
% Version : [Try90] axioms : Reduced > Incomplete.
% English : X intersects the union of Y and Z iff X intersects Y or X
% intersects Z.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (100) [TS89]
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.28 v8.2.0, 0.25 v8.1.0, 0.22 v7.5.0, 0.28 v7.4.0, 0.20 v7.3.0, 0.17 v7.2.0, 0.14 v7.1.0, 0.17 v7.0.0, 0.13 v6.4.0, 0.19 v6.3.0, 0.21 v6.2.0, 0.16 v6.1.0, 0.27 v6.0.0, 0.17 v5.5.0, 0.30 v5.4.0, 0.36 v5.3.0, 0.44 v5.2.0, 0.25 v5.1.0, 0.29 v5.0.0, 0.25 v4.1.0, 0.22 v4.0.1, 0.26 v4.0.0, 0.25 v3.5.0, 0.32 v3.3.0, 0.50 v3.2.0, 0.64 v3.1.0, 0.67 v2.7.0, 0.50 v2.6.0, 0.43 v2.5.0, 0.50 v2.4.0, 0.50 v2.3.0, 0.33 v2.2.1
% Syntax : Number of formulae : 6 ( 1 unt; 0 def)
% Number of atoms : 15 ( 2 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 9 ( 0 ~; 2 |; 1 &)
% ( 5 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 16 ( 15 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%---- line(boole - df(2),1833042)
fof(union_defn,axiom,
! [B,C,D] :
( member(D,union(B,C))
<=> ( member(D,B)
| member(D,C) ) ) ).
%---- line(boole - df(5),1833080)
fof(intersect_defn,axiom,
! [B,C] :
( intersect(B,C)
<=> ? [D] :
( member(D,B)
& member(D,C) ) ) ).
%---- property(commutativity,op(union,2,function))
fof(commutativity_of_union,axiom,
! [B,C] : union(B,C) = union(C,B) ).
%---- property(symmetry,op(intersect,2,predicate))
fof(symmetry_of_intersect,axiom,
! [B,C] :
( intersect(B,C)
=> intersect(C,B) ) ).
%---- line(hidden - axiom186,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(boole - th(100),1834297)
fof(prove_intersect_with_union,conjecture,
! [B,C,D] :
( intersect(B,union(C,D))
<=> ( intersect(B,C)
| intersect(B,D) ) ) ).
%------------------------------------------------------------------------------