TPTP Problem File: SET623^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET623^3 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory
% Problem : (X sym\ Y) sym\ Z = X sym\ (Y sym\ Z)
% Version : [BS+08] axioms.
% English : The symmetric difference of (the symmetric difference of X and Y)
% and Z is the symmetric difference of X and (the symmetric
% difference of Y and Z).
% Refs : [BS+05] Benzmueller et al. (2005), Can a Higher-Order and a Fi
% : [BS+08] Benzmueller et al. (2008), Combined Reasoning by Autom
% : [Ben08] Benzmueller (2008), Email to Geoff Sutcliffe
% Source : [Ben08]
% Names :
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.31 v8.1.0, 0.18 v7.5.0, 0.29 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v3.7.0
% Syntax : Number of formulae : 29 ( 15 unt; 14 typ; 14 def)
% Number of atoms : 40 ( 19 equ; 0 cnn)
% Maximal formula atoms : 1 ( 2 avg)
% Number of connectives : 44 ( 5 ~; 3 |; 6 &; 29 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 73 ( 73 >; 0 *; 0 +; 0 <<)
% Number of symbols : 17 ( 15 usr; 2 con; 0-3 aty)
% Number of variables : 38 ( 32 ^; 4 !; 2 ?; 38 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Basic set theory definitions
include('Axioms/SET008^0.ax').
%------------------------------------------------------------------------------
thf(thm,conjecture,
! [X: $i > $o,Y: $i > $o,Z: $i > $o] :
( ( excl_union @ ( excl_union @ X @ Y ) @ Z )
= ( excl_union @ X @ ( excl_union @ Y @ Z ) ) ) ).
%------------------------------------------------------------------------------