TPTP Problem File: SET611^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET611^3 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory
% Problem : X ^ Y = the empty set iff X \ Y = X
% Version : [BS+08] axioms.
% English : The intersection of X and Y is the empty set iff the difference
% of X and Y is X.
% Refs : [BS+05] Benzmueller et al. (2005), Can a Higher-Order and a Fi
% : [BS+08] Benzmueller et al. (2008), Combined Reasoning by Autom
% : [Ben08] Benzmueller (2008), Email to Geoff Sutcliffe
% Source : [Ben08]
% Names :
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.33 v7.2.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v3.7.0
% Syntax : Number of formulae : 29 ( 14 unt; 14 typ; 14 def)
% Number of atoms : 40 ( 20 equ; 0 cnn)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 41 ( 5 ~; 3 |; 6 &; 25 @)
% ( 1 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 72 ( 72 >; 0 *; 0 +; 0 <<)
% Number of symbols : 19 ( 17 usr; 4 con; 0-3 aty)
% Number of variables : 37 ( 32 ^; 3 !; 2 ?; 37 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Basic set theory definitions
include('Axioms/SET008^0.ax').
%------------------------------------------------------------------------------
thf(thm,conjecture,
! [A: $i > $o,B: $i > $o] :
( ( ( intersection @ A @ B )
= emptyset )
<=> ( ( setminus @ A @ B )
= A ) ) ).
%------------------------------------------------------------------------------