TPTP Problem File: SET608+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET608+3 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Problem : X ^ Y U (X \ Y) = X
% Version : [Try90] axioms : Reduced > Incomplete.
% English : The intersection of X and the union of Y and (the difference of
% X and Y) is X.
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% Source : [ILF]
% Names : BOOLE (80) [TS89]
% Status : Theorem
% Rating : 0.45 v9.0.0, 0.47 v7.5.0, 0.50 v7.4.0, 0.47 v7.3.0, 0.48 v7.2.0, 0.45 v7.1.0, 0.48 v7.0.0, 0.47 v6.4.0, 0.46 v6.3.0, 0.58 v6.2.0, 0.60 v6.1.0, 0.63 v6.0.0, 0.70 v5.4.0, 0.75 v5.3.0, 0.74 v5.2.0, 0.70 v5.1.0, 0.67 v4.1.0, 0.65 v4.0.1, 0.61 v4.0.0, 0.58 v3.7.0, 0.55 v3.5.0, 0.58 v3.3.0, 0.57 v3.2.0, 0.64 v3.1.0, 0.67 v2.7.0, 0.50 v2.6.0, 0.57 v2.5.0, 0.75 v2.4.0, 0.25 v2.3.0, 0.00 v2.2.1
% Syntax : Number of formulae : 10 ( 4 unt; 0 def)
% Number of atoms : 22 ( 5 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 13 ( 1 ~; 1 |; 3 &)
% ( 7 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 3 usr; 0 con; 2-2 aty)
% Number of variables : 24 ( 24 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%---- line(boole - df(2),1833042)
fof(union_defn,axiom,
! [B,C,D] :
( member(D,union(B,C))
<=> ( member(D,B)
| member(D,C) ) ) ).
%---- line(boole - df(3),1833060)
fof(intersection_defn,axiom,
! [B,C,D] :
( member(D,intersection(B,C))
<=> ( member(D,B)
& member(D,C) ) ) ).
%---- line(boole - df(4),1833078)
fof(difference_defn,axiom,
! [B,C,D] :
( member(D,difference(B,C))
<=> ( member(D,B)
& ~ member(D,C) ) ) ).
%---- line(boole - df(8),1833103)
fof(equal_defn,axiom,
! [B,C] :
( B = C
<=> ( subset(B,C)
& subset(C,B) ) ) ).
%---- property(commutativity,op(union,2,function))
fof(commutativity_of_union,axiom,
! [B,C] : union(B,C) = union(C,B) ).
%---- property(commutativity,op(intersection,2,function))
fof(commutativity_of_intersection,axiom,
! [B,C] : intersection(B,C) = intersection(C,B) ).
%---- line(tarski - df(3),1832749)
fof(subset_defn,axiom,
! [B,C] :
( subset(B,C)
<=> ! [D] :
( member(D,B)
=> member(D,C) ) ) ).
%---- property(reflexivity,op(subset,2,predicate))
fof(reflexivity_of_subset,axiom,
! [B] : subset(B,B) ).
%---- line(hidden - axiom142,1832615)
fof(equal_member_defn,axiom,
! [B,C] :
( B = C
<=> ! [D] :
( member(D,B)
<=> member(D,C) ) ) ).
%---- line(boole - th(80),1833943)
fof(prove_union_intersection_difference,conjecture,
! [B,C] : union(intersection(B,C),difference(B,C)) = B ).
%--------------------------------------------------------------------------