TPTP Problem File: SET582^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SET582^5 : TPTP v9.0.0. Released v4.0.0.
% Domain   : Set Theory
% Problem  : TPS problem BOOL-PROP-25
% Version  : Especial.
% English  : Trybulec's 25th Boolean property of sets

% Refs     : [TS89]  Trybulec & Swieczkowska (1989), Boolean Properties of
%          : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0255 [Bro09]
%          : BOOL-PROP-25 [TPS]

% Status   : Theorem
% Rating   : 0.00 v9.0.0, 0.10 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.14 v6.1.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax   : Number of formulae    :    2 (   1 unt;   1 typ;   0 def)
%            Number of atoms       :    1 (   1 equ;   0 cnn)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :   16 (   3   ~;   1   |;   2   &;   7   @)
%                                         (   2 <=>;   1  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (  10 avg)
%            Number of types       :    2 (   1 usr)
%            Number of type conns  :    3 (   3   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    1 (   0 usr;   0 con; 2-2 aty)
%            Number of variables   :    5 (   1   ^;   4   !;   0   ?;   5   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%          : Polymorphic definitions expanded.
%          : 
%------------------------------------------------------------------------------
thf(a_type,type,
    a: $tType ).

thf(cBOOL_PROP_25_pme,conjecture,
    ! [X: a > $o,Y: a > $o,Z: a > $o] :
      ( ! [Xx: a] :
          ( ( ~ ( X @ Xx )
          <=> ( Y @ Xx ) )
        <=> ( Z @ Xx ) )
     => ( X
        = ( ^ [Xz: a] :
              ( ( ( Y @ Xz )
                & ~ ( Z @ Xz ) )
              | ( ( Z @ Xz )
                & ~ ( Y @ Xz ) ) ) ) ) ) ).

%------------------------------------------------------------------------------