TPTP Problem File: SET576^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET576^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Set Theory
% Problem : Trybulec's 17th Boolean property of sets
% Version : [Ben12] axioms.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-SET576+3 [Ben12]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.14 v5.5.0
% Syntax : Number of formulae : 79 ( 33 unt; 39 typ; 32 def)
% Number of atoms : 138 ( 36 equ; 0 cnn)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 194 ( 5 ~; 5 |; 9 &; 165 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 189 ( 189 >; 0 *; 0 +; 0 <<)
% Number of symbols : 47 ( 45 usr; 8 con; 0-3 aty)
% Number of variables : 100 ( 59 ^; 34 !; 7 ?; 100 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(intersect_type,type,
intersect: mu > mu > $i > $o ).
thf(disjoint_type,type,
disjoint: mu > mu > $i > $o ).
thf(member_type,type,
member: mu > mu > $i > $o ).
thf(intersect_defn,axiom,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] :
( mequiv @ ( intersect @ B @ C )
@ ( mexists_ind
@ ^ [D: mu] : ( mand @ ( member @ D @ B ) @ ( member @ D @ C ) ) ) ) ) ) ) ).
thf(disjoint_defn,axiom,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mequiv @ ( disjoint @ B @ C ) @ ( mnot @ ( intersect @ B @ C ) ) ) ) ) ) ).
thf(symmetry_of_intersect,axiom,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( intersect @ B @ C ) @ ( intersect @ C @ B ) ) ) ) ) ).
thf(prove_th17,conjecture,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] :
( mimplies
@ ( mforall_ind
@ ^ [D: mu] : ( mimplies @ ( member @ D @ B ) @ ( mnot @ ( member @ D @ C ) ) ) )
@ ( disjoint @ B @ C ) ) ) ) ) ).
%------------------------------------------------------------------------------