TPTP Problem File: SET104+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET104+1 : TPTP v9.0.0. Bugfixed v5.4.0.
% Domain : Set Theory
% Problem : Special member 2 of an ordered pair
% Version : [Qua92] axioms : Reduced & Augmented > Complete.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [Qua92]
% Names :
% Status : Theorem
% Rating : 0.91 v9.0.0, 0.97 v7.5.0, 1.00 v7.4.0, 0.90 v7.1.0, 0.87 v7.0.0, 0.93 v6.4.0, 0.88 v6.2.0, 0.96 v6.1.0, 1.00 v6.0.0, 0.96 v5.5.0, 1.00 v5.4.0
% Syntax : Number of formulae : 44 ( 16 unt; 0 def)
% Number of atoms : 102 ( 20 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 63 ( 5 ~; 4 |; 26 &)
% ( 19 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 26 ( 26 usr; 5 con; 0-3 aty)
% Number of variables : 88 ( 83 !; 5 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixed : v5.4.0 - Bugfixes to SET005+0 axiom file.
%--------------------------------------------------------------------------
%----Include set theory axioms
include('Axioms/SET005+0.ax').
%--------------------------------------------------------------------------
%----OP3: Special Cases.
fof(property_2_of_ordered_pair,conjecture,
! [X,Y] :
( unordered_pair(null_class,singleton(singleton(Y))) = ordered_pair(X,Y)
| member(X,universal_class) ) ).
%--------------------------------------------------------------------------