TPTP Problem File: SET083+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET083+1 : TPTP v9.0.0. Bugfixed v5.4.0.
% Domain : Set Theory
% Problem : A singleton set is determined by its element
% Version : [Qua92] axioms : Reduced & Augmented > Complete.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [Qua92]
% Names :
% Status : Theorem
% Rating : 0.21 v9.0.0, 0.25 v8.2.0, 0.22 v8.1.0, 0.25 v7.5.0, 0.28 v7.4.0, 0.17 v7.3.0, 0.24 v7.1.0, 0.13 v7.0.0, 0.17 v6.4.0, 0.27 v6.3.0, 0.29 v6.2.0, 0.36 v6.1.0, 0.37 v6.0.0, 0.48 v5.5.0, 0.41 v5.4.0
% Syntax : Number of formulae : 44 ( 16 unt; 0 def)
% Number of atoms : 103 ( 21 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 64 ( 5 ~; 3 |; 27 &)
% ( 19 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 26 ( 26 usr; 5 con; 0-3 aty)
% Number of variables : 88 ( 83 !; 5 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixed : v5.4.0 - Bugfixes to SET005+0 axiom file.
%--------------------------------------------------------------------------
%----Include set theory axioms
include('Axioms/SET005+0.ax').
%--------------------------------------------------------------------------
%----SS5: A singleton set is determined by its element
fof(singleton_identified_by_element1,conjecture,
! [X,Y] :
( ( singleton(X) = singleton(Y)
& member(X,universal_class) )
=> X = Y ) ).
%--------------------------------------------------------------------------