TPTP Problem File: SET072+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET072+1 : TPTP v9.0.0. Bugfixed v5.4.0.
% Domain : Set Theory
% Problem : Right cancellation for unordered pairs
% Version : [Qua92] axioms : Reduced & Augmented > Complete.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [Qua92]
% Names :
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.33 v8.2.0, 0.28 v7.5.0, 0.31 v7.4.0, 0.20 v7.3.0, 0.31 v7.1.0, 0.22 v7.0.0, 0.23 v6.4.0, 0.31 v6.3.0, 0.33 v6.2.0, 0.48 v6.1.0, 0.53 v6.0.0, 0.57 v5.5.0, 0.59 v5.4.0
% Syntax : Number of formulae : 44 ( 16 unt; 0 def)
% Number of atoms : 104 ( 21 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 65 ( 5 ~; 3 |; 28 &)
% ( 19 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 26 ( 26 usr; 5 con; 0-3 aty)
% Number of variables : 89 ( 84 !; 5 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixed : v5.4.0 - Bugfixes to SET005+0 axiom file.
%--------------------------------------------------------------------------
%----Include set theory axioms
include('Axioms/SET005+0.ax').
%--------------------------------------------------------------------------
%----UP5: Right cancellation for unordered pairs
fof(right_cancellation,conjecture,
! [X,Y,Z] :
( ( member(X,universal_class)
& member(Y,universal_class)
& unordered_pair(X,Z) = unordered_pair(Y,Z) )
=> X = Y ) ).
%--------------------------------------------------------------------------