TPTP Problem File: SET062^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET062^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Set Theory
% Problem : The empty set is a subset of all sets
% Version : [Ben12] axioms.
% English :
% Refs : [Pas99] Pastre (1999), Email to G. Sutcliffe
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-SET062+4 [Ben12]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.14 v7.4.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.57 v6.4.0, 0.50 v6.3.0, 0.40 v6.2.0, 0.29 v6.1.0, 0.43 v5.5.0
% Syntax : Number of formulae : 126 ( 42 unt; 48 typ; 32 def)
% Number of atoms : 358 ( 36 equ; 0 cnn)
% Maximal formula atoms : 10 ( 4 avg)
% Number of connectives : 594 ( 5 ~; 5 |; 9 &; 565 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 6 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 201 ( 201 >; 0 *; 0 +; 0 <<)
% Number of symbols : 59 ( 57 usr; 12 con; 0-3 aty)
% Number of variables : 196 ( 134 ^; 55 !; 7 ?; 196 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(equal_set_type,type,
equal_set: mu > mu > $i > $o ).
thf(member_type,type,
member: mu > mu > $i > $o ).
thf(subset_type,type,
subset: mu > mu > $i > $o ).
thf(power_set_type,type,
power_set: mu > mu ).
thf(existence_of_power_set_ax,axiom,
! [V: $i,V1: mu] : ( exists_in_world @ ( power_set @ V1 ) @ V ) ).
thf(intersection_type,type,
intersection: mu > mu > mu ).
thf(existence_of_intersection_ax,axiom,
! [V: $i,V2: mu,V1: mu] : ( exists_in_world @ ( intersection @ V2 @ V1 ) @ V ) ).
thf(union_type,type,
union: mu > mu > mu ).
thf(existence_of_union_ax,axiom,
! [V: $i,V2: mu,V1: mu] : ( exists_in_world @ ( union @ V2 @ V1 ) @ V ) ).
thf(difference_type,type,
difference: mu > mu > mu ).
thf(existence_of_difference_ax,axiom,
! [V: $i,V2: mu,V1: mu] : ( exists_in_world @ ( difference @ V2 @ V1 ) @ V ) ).
thf(singleton_type,type,
singleton: mu > mu ).
thf(existence_of_singleton_ax,axiom,
! [V: $i,V1: mu] : ( exists_in_world @ ( singleton @ V1 ) @ V ) ).
thf(unordered_pair_type,type,
unordered_pair: mu > mu > mu ).
thf(existence_of_unordered_pair_ax,axiom,
! [V: $i,V2: mu,V1: mu] : ( exists_in_world @ ( unordered_pair @ V2 @ V1 ) @ V ) ).
thf(sum_type,type,
sum: mu > mu ).
thf(existence_of_sum_ax,axiom,
! [V: $i,V1: mu] : ( exists_in_world @ ( sum @ V1 ) @ V ) ).
thf(product_type,type,
product: mu > mu ).
thf(existence_of_product_ax,axiom,
! [V: $i,V1: mu] : ( exists_in_world @ ( product @ V1 ) @ V ) ).
thf(empty_set_type,type,
empty_set: mu ).
thf(existence_of_empty_set_ax,axiom,
! [V: $i] : ( exists_in_world @ empty_set @ V ) ).
thf(reflexivity,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] : ( qmltpeq @ X @ X ) ) ) ).
thf(symmetry,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] :
( mforall_ind
@ ^ [Y: mu] : ( mimplies @ ( qmltpeq @ X @ Y ) @ ( qmltpeq @ Y @ X ) ) ) ) ) ).
thf(transitivity,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] :
( mforall_ind
@ ^ [Y: mu] :
( mforall_ind
@ ^ [Z: mu] : ( mimplies @ ( mand @ ( qmltpeq @ X @ Y ) @ ( qmltpeq @ Y @ Z ) ) @ ( qmltpeq @ X @ Z ) ) ) ) ) ) ).
thf(difference_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( difference @ A @ C ) @ ( difference @ B @ C ) ) ) ) ) ) ) ).
thf(difference_substitution_2,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( difference @ C @ A ) @ ( difference @ C @ B ) ) ) ) ) ) ) ).
thf(intersection_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( intersection @ A @ C ) @ ( intersection @ B @ C ) ) ) ) ) ) ) ).
thf(intersection_substitution_2,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( intersection @ C @ A ) @ ( intersection @ C @ B ) ) ) ) ) ) ) ).
thf(power_set_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( power_set @ A ) @ ( power_set @ B ) ) ) ) ) ) ).
thf(product_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( product @ A ) @ ( product @ B ) ) ) ) ) ) ).
thf(singleton_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( singleton @ A ) @ ( singleton @ B ) ) ) ) ) ) ).
thf(sum_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( sum @ A ) @ ( sum @ B ) ) ) ) ) ) ).
thf(union_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( union @ A @ C ) @ ( union @ B @ C ) ) ) ) ) ) ) ).
thf(union_substitution_2,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( union @ C @ A ) @ ( union @ C @ B ) ) ) ) ) ) ) ).
thf(unordered_pair_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( unordered_pair @ A @ C ) @ ( unordered_pair @ B @ C ) ) ) ) ) ) ) ).
thf(unordered_pair_substitution_2,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( unordered_pair @ C @ A ) @ ( unordered_pair @ C @ B ) ) ) ) ) ) ) ).
thf(equal_set_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( equal_set @ A @ C ) ) @ ( equal_set @ B @ C ) ) ) ) ) ) ).
thf(equal_set_substitution_2,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( equal_set @ C @ A ) ) @ ( equal_set @ C @ B ) ) ) ) ) ) ).
thf(member_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( member @ A @ C ) ) @ ( member @ B @ C ) ) ) ) ) ) ).
thf(member_substitution_2,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( member @ C @ A ) ) @ ( member @ C @ B ) ) ) ) ) ) ).
thf(subset_substitution_1,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( subset @ A @ C ) ) @ ( subset @ B @ C ) ) ) ) ) ) ).
thf(subset_substitution_2,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( subset @ C @ A ) ) @ ( subset @ C @ B ) ) ) ) ) ) ).
thf(subset,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] :
( mequiv @ ( subset @ A @ B )
@ ( mforall_ind
@ ^ [X: mu] : ( mimplies @ ( member @ X @ A ) @ ( member @ X @ B ) ) ) ) ) ) ) ).
thf(equal_set,axiom,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] : ( mequiv @ ( equal_set @ A @ B ) @ ( mand @ ( subset @ A @ B ) @ ( subset @ B @ A ) ) ) ) ) ) ).
thf(power_set,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] :
( mforall_ind
@ ^ [A: mu] : ( mequiv @ ( member @ X @ ( power_set @ A ) ) @ ( subset @ X @ A ) ) ) ) ) ).
thf(intersection,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] :
( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] : ( mequiv @ ( member @ X @ ( intersection @ A @ B ) ) @ ( mand @ ( member @ X @ A ) @ ( member @ X @ B ) ) ) ) ) ) ) ).
thf(union,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] :
( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] : ( mequiv @ ( member @ X @ ( union @ A @ B ) ) @ ( mor @ ( member @ X @ A ) @ ( member @ X @ B ) ) ) ) ) ) ) ).
thf(empty_set,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] : ( mnot @ ( member @ X @ empty_set ) ) ) ) ).
thf(difference,axiom,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [E: mu] : ( mequiv @ ( member @ B @ ( difference @ E @ A ) ) @ ( mand @ ( member @ B @ E ) @ ( mnot @ ( member @ B @ A ) ) ) ) ) ) ) ) ).
thf(singleton,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] :
( mforall_ind
@ ^ [A: mu] : ( mequiv @ ( member @ X @ ( singleton @ A ) ) @ ( qmltpeq @ X @ A ) ) ) ) ) ).
thf(unordered_pair,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] :
( mforall_ind
@ ^ [A: mu] :
( mforall_ind
@ ^ [B: mu] : ( mequiv @ ( member @ X @ ( unordered_pair @ A @ B ) ) @ ( mor @ ( qmltpeq @ X @ A ) @ ( qmltpeq @ X @ B ) ) ) ) ) ) ) ).
thf(sum,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] :
( mforall_ind
@ ^ [A: mu] :
( mequiv @ ( member @ X @ ( sum @ A ) )
@ ( mexists_ind
@ ^ [Y: mu] : ( mand @ ( member @ Y @ A ) @ ( member @ X @ Y ) ) ) ) ) ) ) ).
thf(product,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] :
( mforall_ind
@ ^ [A: mu] :
( mequiv @ ( member @ X @ ( product @ A ) )
@ ( mforall_ind
@ ^ [Y: mu] : ( mimplies @ ( member @ Y @ A ) @ ( member @ X @ Y ) ) ) ) ) ) ) ).
thf(thI15,conjecture,
( mvalid
@ ( mforall_ind
@ ^ [A: mu] : ( subset @ empty_set @ A ) ) ) ).
%------------------------------------------------------------------------------