TPTP Problem File: SET062^7.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SET062^7 : TPTP v9.0.0. Released v5.5.0.
% Domain   : Set Theory
% Problem  : The empty set is a subset of all sets
% Version  : [Ben12] axioms.
% English  :

% Refs     : [Pas99] Pastre (1999), Email to G. Sutcliffe
%          : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source   : [Ben12]
% Names    : s4-cumul-SET062+4 [Ben12]

% Status   : Theorem
% Rating   : 0.25 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.14 v7.4.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.57 v6.4.0, 0.50 v6.3.0, 0.40 v6.2.0, 0.29 v6.1.0, 0.43 v5.5.0
% Syntax   : Number of formulae    :  126 (  42 unt;  48 typ;  32 def)
%            Number of atoms       :  358 (  36 equ;   0 cnn)
%            Maximal formula atoms :   10 (   4 avg)
%            Number of connectives :  594 (   5   ~;   5   |;   9   &; 565   @)
%                                         (   0 <=>;  10  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   14 (   6 avg)
%            Number of types       :    3 (   1 usr)
%            Number of type conns  :  201 ( 201   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   59 (  57 usr;  12 con; 0-3 aty)
%            Number of variables   :  196 ( 134   ^;  55   !;   7   ?; 196   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : 
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(equal_set_type,type,
    equal_set: mu > mu > $i > $o ).

thf(member_type,type,
    member: mu > mu > $i > $o ).

thf(subset_type,type,
    subset: mu > mu > $i > $o ).

thf(power_set_type,type,
    power_set: mu > mu ).

thf(existence_of_power_set_ax,axiom,
    ! [V: $i,V1: mu] : ( exists_in_world @ ( power_set @ V1 ) @ V ) ).

thf(intersection_type,type,
    intersection: mu > mu > mu ).

thf(existence_of_intersection_ax,axiom,
    ! [V: $i,V2: mu,V1: mu] : ( exists_in_world @ ( intersection @ V2 @ V1 ) @ V ) ).

thf(union_type,type,
    union: mu > mu > mu ).

thf(existence_of_union_ax,axiom,
    ! [V: $i,V2: mu,V1: mu] : ( exists_in_world @ ( union @ V2 @ V1 ) @ V ) ).

thf(difference_type,type,
    difference: mu > mu > mu ).

thf(existence_of_difference_ax,axiom,
    ! [V: $i,V2: mu,V1: mu] : ( exists_in_world @ ( difference @ V2 @ V1 ) @ V ) ).

thf(singleton_type,type,
    singleton: mu > mu ).

thf(existence_of_singleton_ax,axiom,
    ! [V: $i,V1: mu] : ( exists_in_world @ ( singleton @ V1 ) @ V ) ).

thf(unordered_pair_type,type,
    unordered_pair: mu > mu > mu ).

thf(existence_of_unordered_pair_ax,axiom,
    ! [V: $i,V2: mu,V1: mu] : ( exists_in_world @ ( unordered_pair @ V2 @ V1 ) @ V ) ).

thf(sum_type,type,
    sum: mu > mu ).

thf(existence_of_sum_ax,axiom,
    ! [V: $i,V1: mu] : ( exists_in_world @ ( sum @ V1 ) @ V ) ).

thf(product_type,type,
    product: mu > mu ).

thf(existence_of_product_ax,axiom,
    ! [V: $i,V1: mu] : ( exists_in_world @ ( product @ V1 ) @ V ) ).

thf(empty_set_type,type,
    empty_set: mu ).

thf(existence_of_empty_set_ax,axiom,
    ! [V: $i] : ( exists_in_world @ empty_set @ V ) ).

thf(reflexivity,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [X: mu] : ( qmltpeq @ X @ X ) ) ) ).

thf(symmetry,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [X: mu] :
          ( mforall_ind
          @ ^ [Y: mu] : ( mimplies @ ( qmltpeq @ X @ Y ) @ ( qmltpeq @ Y @ X ) ) ) ) ) ).

thf(transitivity,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [X: mu] :
          ( mforall_ind
          @ ^ [Y: mu] :
              ( mforall_ind
              @ ^ [Z: mu] : ( mimplies @ ( mand @ ( qmltpeq @ X @ Y ) @ ( qmltpeq @ Y @ Z ) ) @ ( qmltpeq @ X @ Z ) ) ) ) ) ) ).

thf(difference_substitution_1,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( difference @ A @ C ) @ ( difference @ B @ C ) ) ) ) ) ) ) ).

thf(difference_substitution_2,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( difference @ C @ A ) @ ( difference @ C @ B ) ) ) ) ) ) ) ).

thf(intersection_substitution_1,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( intersection @ A @ C ) @ ( intersection @ B @ C ) ) ) ) ) ) ) ).

thf(intersection_substitution_2,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( intersection @ C @ A ) @ ( intersection @ C @ B ) ) ) ) ) ) ) ).

thf(power_set_substitution_1,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( power_set @ A ) @ ( power_set @ B ) ) ) ) ) ) ).

thf(product_substitution_1,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( product @ A ) @ ( product @ B ) ) ) ) ) ) ).

thf(singleton_substitution_1,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( singleton @ A ) @ ( singleton @ B ) ) ) ) ) ) ).

thf(sum_substitution_1,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( sum @ A ) @ ( sum @ B ) ) ) ) ) ) ).

thf(union_substitution_1,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( union @ A @ C ) @ ( union @ B @ C ) ) ) ) ) ) ) ).

thf(union_substitution_2,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( union @ C @ A ) @ ( union @ C @ B ) ) ) ) ) ) ) ).

thf(unordered_pair_substitution_1,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( unordered_pair @ A @ C ) @ ( unordered_pair @ B @ C ) ) ) ) ) ) ) ).

thf(unordered_pair_substitution_2,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( qmltpeq @ A @ B ) @ ( qmltpeq @ ( unordered_pair @ C @ A ) @ ( unordered_pair @ C @ B ) ) ) ) ) ) ) ).

thf(equal_set_substitution_1,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( equal_set @ A @ C ) ) @ ( equal_set @ B @ C ) ) ) ) ) ) ).

thf(equal_set_substitution_2,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( equal_set @ C @ A ) ) @ ( equal_set @ C @ B ) ) ) ) ) ) ).

thf(member_substitution_1,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( member @ A @ C ) ) @ ( member @ B @ C ) ) ) ) ) ) ).

thf(member_substitution_2,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( member @ C @ A ) ) @ ( member @ C @ B ) ) ) ) ) ) ).

thf(subset_substitution_1,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( subset @ A @ C ) ) @ ( subset @ B @ C ) ) ) ) ) ) ).

thf(subset_substitution_2,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mforall_ind
              @ ^ [C: mu] : ( mimplies @ ( mand @ ( qmltpeq @ A @ B ) @ ( subset @ C @ A ) ) @ ( subset @ C @ B ) ) ) ) ) ) ).

thf(subset,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] :
              ( mequiv @ ( subset @ A @ B )
              @ ( mforall_ind
                @ ^ [X: mu] : ( mimplies @ ( member @ X @ A ) @ ( member @ X @ B ) ) ) ) ) ) ) ).

thf(equal_set,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] :
          ( mforall_ind
          @ ^ [B: mu] : ( mequiv @ ( equal_set @ A @ B ) @ ( mand @ ( subset @ A @ B ) @ ( subset @ B @ A ) ) ) ) ) ) ).

thf(power_set,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [X: mu] :
          ( mforall_ind
          @ ^ [A: mu] : ( mequiv @ ( member @ X @ ( power_set @ A ) ) @ ( subset @ X @ A ) ) ) ) ) ).

thf(intersection,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [X: mu] :
          ( mforall_ind
          @ ^ [A: mu] :
              ( mforall_ind
              @ ^ [B: mu] : ( mequiv @ ( member @ X @ ( intersection @ A @ B ) ) @ ( mand @ ( member @ X @ A ) @ ( member @ X @ B ) ) ) ) ) ) ) ).

thf(union,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [X: mu] :
          ( mforall_ind
          @ ^ [A: mu] :
              ( mforall_ind
              @ ^ [B: mu] : ( mequiv @ ( member @ X @ ( union @ A @ B ) ) @ ( mor @ ( member @ X @ A ) @ ( member @ X @ B ) ) ) ) ) ) ) ).

thf(empty_set,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [X: mu] : ( mnot @ ( member @ X @ empty_set ) ) ) ) ).

thf(difference,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [B: mu] :
          ( mforall_ind
          @ ^ [A: mu] :
              ( mforall_ind
              @ ^ [E: mu] : ( mequiv @ ( member @ B @ ( difference @ E @ A ) ) @ ( mand @ ( member @ B @ E ) @ ( mnot @ ( member @ B @ A ) ) ) ) ) ) ) ) ).

thf(singleton,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [X: mu] :
          ( mforall_ind
          @ ^ [A: mu] : ( mequiv @ ( member @ X @ ( singleton @ A ) ) @ ( qmltpeq @ X @ A ) ) ) ) ) ).

thf(unordered_pair,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [X: mu] :
          ( mforall_ind
          @ ^ [A: mu] :
              ( mforall_ind
              @ ^ [B: mu] : ( mequiv @ ( member @ X @ ( unordered_pair @ A @ B ) ) @ ( mor @ ( qmltpeq @ X @ A ) @ ( qmltpeq @ X @ B ) ) ) ) ) ) ) ).

thf(sum,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [X: mu] :
          ( mforall_ind
          @ ^ [A: mu] :
              ( mequiv @ ( member @ X @ ( sum @ A ) )
              @ ( mexists_ind
                @ ^ [Y: mu] : ( mand @ ( member @ Y @ A ) @ ( member @ X @ Y ) ) ) ) ) ) ) ).

thf(product,axiom,
    ( mvalid
    @ ( mforall_ind
      @ ^ [X: mu] :
          ( mforall_ind
          @ ^ [A: mu] :
              ( mequiv @ ( member @ X @ ( product @ A ) )
              @ ( mforall_ind
                @ ^ [Y: mu] : ( mimplies @ ( member @ Y @ A ) @ ( member @ X @ Y ) ) ) ) ) ) ) ).

thf(thI15,conjecture,
    ( mvalid
    @ ( mforall_ind
      @ ^ [A: mu] : ( subset @ empty_set @ A ) ) ) ).

%------------------------------------------------------------------------------