TPTP Problem File: SET045^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET045^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Set Theory
% Problem : No Universal Set
% Version : [Ben12] axioms.
% English :
% Refs : [KM64] Kalish & Montegue (1964), Logic: Techniques of Formal
% : [Goe69] Goedel (1969), An Interpretation of the Intuitionistic
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-GSE045+1 [Ben12]
% Status : Theorem
% Rating : 0.75 v9.0.0, 0.90 v8.2.0, 0.85 v8.1.0, 0.91 v7.5.0, 0.86 v7.4.0, 0.89 v7.2.0, 0.88 v7.0.0, 0.86 v6.4.0, 0.83 v6.3.0, 0.80 v6.2.0, 0.86 v5.5.0
% Syntax : Number of formulae : 75 ( 33 unt; 37 typ; 32 def)
% Number of atoms : 143 ( 36 equ; 0 cnn)
% Maximal formula atoms : 29 ( 3 avg)
% Number of connectives : 195 ( 5 ~; 5 |; 9 &; 166 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 20 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 183 ( 183 >; 0 *; 0 +; 0 <<)
% Number of symbols : 45 ( 43 usr; 8 con; 0-3 aty)
% Number of variables : 95 ( 54 ^; 34 !; 7 ?; 95 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Goedel translation of SET045+1
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(element_type,type,
element: mu > mu > $i > $o ).
thf(pel41_1,axiom,
( mvalid
@ ( mbox_s4
@ ( mforall_ind
@ ^ [Z: mu] :
( mexists_ind
@ ^ [Y: mu] :
( mbox_s4
@ ( mforall_ind
@ ^ [X: mu] : ( mand @ ( mbox_s4 @ ( mimplies @ ( mbox_s4 @ ( element @ X @ Y ) ) @ ( mand @ ( mbox_s4 @ ( element @ X @ Z ) ) @ ( mbox_s4 @ ( mnot @ ( mbox_s4 @ ( element @ X @ X ) ) ) ) ) ) ) @ ( mbox_s4 @ ( mimplies @ ( mand @ ( mbox_s4 @ ( element @ X @ Z ) ) @ ( mbox_s4 @ ( mnot @ ( mbox_s4 @ ( element @ X @ X ) ) ) ) ) @ ( mbox_s4 @ ( element @ X @ Y ) ) ) ) ) ) ) ) ) ) ) ).
thf(pel41,conjecture,
( mvalid
@ ( mbox_s4
@ ( mnot
@ ( mexists_ind
@ ^ [Z: mu] :
( mbox_s4
@ ( mforall_ind
@ ^ [X: mu] : ( mbox_s4 @ ( element @ X @ Z ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------