TPTP Problem File: SET027^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET027^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Set Theory
% Problem : Transitivity of subset
% Version : [Ben12] axioms.
% English :
% Refs : [ILF] The ILF Group (1998), The ILF System: A Tool for the Int
% : [Try90] Trybulec (1990), Tarski Grothendieck Set Theory
% : [TS89] Trybulec & Swieczkowska (1989), Boolean Properties of
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-SET027+3 [Ben12]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.56 v7.2.0, 0.50 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.43 v5.5.0
% Syntax : Number of formulae : 77 ( 33 unt; 38 typ; 32 def)
% Number of atoms : 127 ( 36 equ; 0 cnn)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 178 ( 5 ~; 5 |; 9 &; 149 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 186 ( 186 >; 0 *; 0 +; 0 <<)
% Number of symbols : 44 ( 42 usr; 6 con; 0-3 aty)
% Number of variables : 97 ( 56 ^; 34 !; 7 ?; 97 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(member_type,type,
member: mu > mu > $i > $o ).
thf(subset_type,type,
subset: mu > mu > $i > $o ).
thf(subset_defn,axiom,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] :
( mequiv @ ( subset @ B @ C )
@ ( mforall_ind
@ ^ [D: mu] : ( mimplies @ ( member @ D @ B ) @ ( member @ D @ C ) ) ) ) ) ) ) ).
thf(reflexivity_of_subset,axiom,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] : ( subset @ B @ B ) ) ) ).
thf(prove_transitivity_of_subset,conjecture,
( mvalid
@ ( mforall_ind
@ ^ [B: mu] :
( mforall_ind
@ ^ [C: mu] :
( mforall_ind
@ ^ [D: mu] : ( mimplies @ ( mand @ ( subset @ B @ C ) @ ( subset @ C @ D ) ) @ ( subset @ B @ D ) ) ) ) ) ) ).
%------------------------------------------------------------------------------