TPTP Problem File: SET016+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SET016+1 : TPTP v9.0.0. Bugfixed v5.4.0.
% Domain : Set Theory
% Problem : First components of equal ordered pairs are equal
% Version : [Qua92] axioms : Reduced & Augmented > Complete.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% Source : [Qua92]
% Names :
% Status : Theorem
% Rating : 0.55 v9.0.0, 0.58 v8.2.0, 0.56 v8.1.0, 0.61 v7.5.0, 0.62 v7.4.0, 0.53 v7.3.0, 0.62 v7.1.0, 0.61 v7.0.0, 0.60 v6.4.0, 0.69 v6.3.0, 0.67 v6.2.0, 0.76 v6.1.0, 0.83 v5.5.0, 0.85 v5.4.0
% Syntax : Number of formulae : 44 ( 16 unt; 0 def)
% Number of atoms : 103 ( 21 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 64 ( 5 ~; 3 |; 27 &)
% ( 19 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 26 ( 26 usr; 5 con; 0-3 aty)
% Number of variables : 90 ( 85 !; 5 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixed : v5.4.0 - Bugfixes to SET005+0 axiom file.
%--------------------------------------------------------------------------
%----Include set theory axioms
include('Axioms/SET005+0.ax').
%--------------------------------------------------------------------------
%----OP10: Improved version of (OP4)
fof(ordered_pair_determines_components1,conjecture,
! [W,X,Y,Z] :
( ( ordered_pair(W,X) = ordered_pair(Y,Z)
& member(W,universal_class) )
=> W = Y ) ).
%--------------------------------------------------------------------------