TPTP Problem File: ROB015-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ROB015-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : If -(-e + -(d + -e)) = d then -(e + k(d + -(d + -e))) = -e
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.64 v9.0.0, 0.68 v8.2.0, 0.71 v8.1.0, 0.65 v7.5.0
% Syntax : Number of clauses : 18 ( 18 unt; 0 nHn; 6 RR)
% Number of literals : 18 ( 18 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 9 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 16 ( 16 usr; 7 con; 0-4 aty)
% Number of variables : 30 ( 4 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from ROB015-2 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq4(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq3(A,A,B,C) = B ).
cnf(ifeq_axiom_002,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_003,axiom,
ifeq(A,A,B,C) = B ).
cnf(commutativity_of_add,axiom,
add(X,Y) = add(Y,X) ).
cnf(associativity_of_add,axiom,
add(add(X,Y),Z) = add(X,add(Y,Z)) ).
cnf(robbins_axiom,axiom,
negate(add(negate(add(X,Y)),negate(add(X,negate(Y))))) = X ).
cnf(one_times_x,axiom,
multiply(one,X) = X ).
cnf(times_by_adding,axiom,
ifeq2(positive_integer(X),true,add(X,multiply(V,X)),multiply(successor(V),X)) = multiply(successor(V),X) ).
cnf(one,axiom,
positive_integer(one) = true ).
cnf(next_integer,axiom,
ifeq(positive_integer(X),true,positive_integer(successor(X)),true) = true ).
cnf(lemma_3_2,axiom,
ifeq4(negate(add(X,negate(add(Y,Z)))),negate(add(Y,negate(add(X,Z)))),X,Y) = Y ).
cnf(lemma_3_4,axiom,
ifeq2(positive_integer(Vk),true,ifeq4(negate(add(X,negate(Y))),Z,negate(add(X,negate(add(Y,multiply(Vk,add(X,Z)))))),Z),Z) = Z ).
cnf(condition,hypothesis,
negate(add(negate(e),negate(add(d,negate(e))))) = d ).
cnf(k_positive,axiom,
positive_integer(k) = true ).
cnf(base_step,axiom,
ifeq3(negate(add(e,multiply(k,add(d,negate(add(d,negate(e))))))),negate(e),a,b) = b ).
cnf(prove_induction_step,negated_conjecture,
ifeq3(negate(add(e,multiply(successor(k),add(d,negate(add(d,negate(e))))))),negate(e),a,b) = b ).
cnf(goal,negated_conjecture,
a != b ).
%------------------------------------------------------------------------------