TPTP Problem File: ROB010-1.p

View Solutions - Solve Problem

%--------------------------------------------------------------------------
% File     : ROB010-1 : TPTP v7.5.0. Released v1.0.0.
% Domain   : Robbins Algebra
% Problem  : If -(a + -b) = c then -(c + -(b + a)) = a
% Version  : [Win90] (equality) axioms.
% English  :

% Refs     : [Win90] Winker (1990), Robbins Algebra: Conditions that make a
%          : [LW92]  Lusk & Wos (1992), Benchmark Problems in Which Equalit
% Source   : [Win90]
% Names    : Lemma 3.3 [Win90]
%          : RA2 [LW92]

% Status   : Unsatisfiable
% Rating   : 0.00 v7.4.0, 0.04 v7.3.0, 0.00 v6.0.0, 0.05 v5.5.0, 0.00 v5.1.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.00 v2.0.0
% Syntax   : Number of clauses     :    5 (   0 non-Horn;   5 unit;   2 RR)
%            Number of atoms       :    5 (   5 equality)
%            Maximal clause size   :    1 (   1 average)
%            Number of predicates  :    1 (   0 propositional; 2-2 arity)
%            Number of functors    :    5 (   3 constant; 0-2 arity)
%            Number of variables   :    7 (   0 singleton)
%            Maximal term depth    :    6 (   3 average)
% SPC      : CNF_UNS_RFO_PEQ_UEQ

% Comments :
%--------------------------------------------------------------------------
%----Include axioms for Robbins algebra
include('Axioms/ROB001-0.ax').
%--------------------------------------------------------------------------
cnf(condition,hypothesis,
    ( negate(add(a,negate(b))) = c )).

cnf(prove_result,negated_conjecture,
    (  negate(add(c,negate(add(b,a)))) != a )).

%--------------------------------------------------------------------------