TPTP Problem File: RNG004-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RNG004-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : X*Y = -X*-Y
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.64 v8.2.0, 0.58 v8.1.0, 0.60 v7.5.0
% Syntax : Number of clauses : 22 ( 22 unt; 0 nHn; 3 RR)
% Number of literals : 22 ( 22 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 13 ( 13 usr; 6 con; 0-4 aty)
% Number of variables : 77 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from RNG004-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq(A,A,B,C) = B ).
cnf(additive_identity1,axiom,
sum(additive_identity,X,X) = true ).
cnf(additive_identity2,axiom,
sum(X,additive_identity,X) = true ).
cnf(closure_of_multiplication,axiom,
product(X,Y,multiply(X,Y)) = true ).
cnf(closure_of_addition,axiom,
sum(X,Y,add(X,Y)) = true ).
cnf(left_inverse,axiom,
sum(additive_inverse(X),X,additive_identity) = true ).
cnf(right_inverse,axiom,
sum(X,additive_inverse(X),additive_identity) = true ).
cnf(associativity_of_addition1,axiom,
ifeq(sum(U,Z,W),true,ifeq(sum(Y,Z,V),true,ifeq(sum(X,Y,U),true,sum(X,V,W),true),true),true) = true ).
cnf(associativity_of_addition2,axiom,
ifeq(sum(Y,Z,V),true,ifeq(sum(X,V,W),true,ifeq(sum(X,Y,U),true,sum(U,Z,W),true),true),true) = true ).
cnf(commutativity_of_addition,axiom,
ifeq(sum(X,Y,Z),true,sum(Y,X,Z),true) = true ).
cnf(associativity_of_multiplication1,axiom,
ifeq(product(U,Z,W),true,ifeq(product(Y,Z,V),true,ifeq(product(X,Y,U),true,product(X,V,W),true),true),true) = true ).
cnf(associativity_of_multiplication2,axiom,
ifeq(product(Y,Z,V),true,ifeq(product(X,V,W),true,ifeq(product(X,Y,U),true,product(U,Z,W),true),true),true) = true ).
cnf(distributivity1,axiom,
ifeq(product(X,V3,V4),true,ifeq(product(X,Z,V2),true,ifeq(product(X,Y,V1),true,ifeq(sum(Y,Z,V3),true,sum(V1,V2,V4),true),true),true),true) = true ).
cnf(distributivity2,axiom,
ifeq(product(X,Z,V2),true,ifeq(product(X,Y,V1),true,ifeq(sum(V1,V2,V4),true,ifeq(sum(Y,Z,V3),true,product(X,V3,V4),true),true),true),true) = true ).
cnf(distributivity3,axiom,
ifeq(product(V3,X,V4),true,ifeq(product(Z,X,V2),true,ifeq(product(Y,X,V1),true,ifeq(sum(Y,Z,V3),true,sum(V1,V2,V4),true),true),true),true) = true ).
cnf(distributivity4,axiom,
ifeq(product(Z,X,V2),true,ifeq(product(Y,X,V1),true,ifeq(sum(V1,V2,V4),true,ifeq(sum(Y,Z,V3),true,product(V3,X,V4),true),true),true),true) = true ).
cnf(addition_is_well_defined,axiom,
ifeq2(sum(X,Y,V),true,ifeq2(sum(X,Y,U),true,U,V),V) = V ).
cnf(multiplication_is_well_defined,axiom,
ifeq2(product(X,Y,V),true,ifeq2(product(X,Y,U),true,U,V),V) = V ).
cnf(a_times_b,hypothesis,
product(a,b,c) = true ).
cnf(a_inverse_times_b_inverse,hypothesis,
product(additive_inverse(a),additive_inverse(b),d) = true ).
cnf(prove_c_equals_d,negated_conjecture,
c != d ).
%------------------------------------------------------------------------------