TPTP Problem File: REL041-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : REL041-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Relation Algebra
% Problem : Equivalence of different definitions of partial functions
% Version : [Mad95] (equational) axioms.
% English : x is a partial function if x^;x is a subidentity ([SS93]). x is
% a partial function if for all y x;y meet x;overline{y} = 0.
% These definitions are equivalent.
% Refs : [Mad95] Maddux (1995), Relation-Algebraic Semantics
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Unsatisfiable
% Rating : 0.86 v8.2.0, 0.88 v8.1.0, 0.90 v7.5.0, 0.88 v7.4.0, 0.91 v7.3.0, 0.89 v7.1.0, 0.94 v7.0.0, 0.95 v6.3.0, 0.94 v6.2.0, 0.93 v6.1.0, 0.94 v6.0.0, 0.95 v5.4.0, 0.93 v5.3.0, 0.92 v5.2.0, 0.93 v4.1.0, 0.91 v4.0.1, 0.93 v4.0.0
% Syntax : Number of clauses : 15 ( 15 unt; 0 nHn; 2 RR)
% Number of literals : 15 ( 15 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 5 con; 0-2 aty)
% Number of variables : 25 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : tptp2X -f tptp:short -t cnf:otter REL041+1.p
%------------------------------------------------------------------------------
%----Include axioms of relation algebra
include('Axioms/REL001-0.ax').
%------------------------------------------------------------------------------
cnf(goals_14,negated_conjecture,
join(composition(converse(sk1),sk1),one) = one ).
cnf(goals_15,negated_conjecture,
meet(composition(sk1,sk2),composition(sk1,complement(sk2))) != zero ).
%------------------------------------------------------------------------------