TPTP Problem File: REL041+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : REL041+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Relation Algebra
% Problem : Equivalence of different definitions of partial functions
% Version : [Mad95] (equational) axioms.
% English : x is a partial function if x^;x is a subidentity ([SS93]). x is
% a partial function if for all y x;y meet x;overline{y} = 0.
% These definitions are equivalent.
% Refs : [SS93] Schmidt & Stroehlein (1993), Relations and Graphs
% : [Mad95] Maddux (1995), Relation-Algebraic Semantics
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 0.82 v9.0.0, 0.80 v8.2.0, 0.83 v8.1.0, 0.87 v7.5.0, 0.81 v7.4.0, 0.82 v7.3.0, 0.85 v7.2.0, 0.92 v7.1.0, 1.00 v4.0.0
% Syntax : Number of formulae : 14 ( 13 unt; 0 def)
% Number of atoms : 15 ( 15 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 1 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-2 aty)
% Number of variables : 27 ( 27 !; 0 ?)
% SPC : FOF_THM_RFO_PEQ
% Comments :
%------------------------------------------------------------------------------
%---Include axioms for relation algebra
include('Axioms/REL001+0.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0] :
( join(composition(converse(X0),X0),one) = one
=> ! [X1] : meet(composition(X0,X1),composition(X0,complement(X1))) = zero ) ).
%------------------------------------------------------------------------------